Bubble-mediated gas exchange in turbulent flow is critical in bubble column chemical reactors as well as for ocean–atmosphere gas exchange related to air entrained by breaking waves. Understanding the transfer rate from a single bubble in turbulence at large Péclet numbers (defined as the ratio between the rate of advection and diffusion of gas) is important as it can be used for improving models on a larger scale. We characterize the mass transfer of dilute gases from a single bubble in a homogeneous isotropic turbulent flow in the limit of negligible bubble volume variations. We show that the mass transfer occurs within a thin diffusive boundary layer at the bubble–liquid interface, whose thickness decreases with an increase in turbulent Péclet number, $$\widetilde {{Pe}}$$ . We propose a suitable time scale $$\theta$$ for Higbie ( Trans. AIChE , vol. 31, 1935, pp. 365–389) penetration theory, $$\theta = d_0/\tilde {u}$$ , based on $$d_0$$ the bubble diameter and $$\tilde {u}$$ a characteristic turbulent velocity, here $$\tilde {u}=\sqrt {3}\,u_{{rms}}$$ , where $$u_{{rms}}$$ is the large-scale turbulence fluctuations. This leads to a non-dimensional transfer rate $${Sh} = 2(3)^{1/4}\sqrt {\widetilde {{Pe}}/{\rm \pi} }$$ from the bubble in the isotropic turbulent flow. The theoretical prediction is verified by direct numerical simulations of mass transfer of dilute gas from a bubble in homogeneous and isotropic turbulence, and very good agreement is observed as long as the thin boundary layer is properly resolved.
more »
« less
Direct numerical simulations of bubble-mediated gas transfer and dissolution in quiescent and turbulent flows
We perform direct numerical simulations of a gas bubble dissolving in a surrounding liquid. The bubble volume is reduced due to dissolution of the gas, with the numerical implementation of an immersed boundary method, coupling the gas diffusion and the Navier–Stokes equations. The methods are validated against planar and spherical geometries’ analytical moving boundary problems, including the classic Epstein–Plesset problem. Considering a bubble rising in a quiescent liquid, we show that the mass transfer coefficient $$k_L$$ can be described by the classic Levich formula $$k_L = (2/\sqrt {{\rm \pi} })\sqrt {\mathscr {D}_l\,U(t)/d(t)}$$ , with $d(t)$ and $U(t)$ the time-varying bubble size and rise velocity, and $$\mathscr {D}_l$$ the gas diffusivity in the liquid. Next, we investigate the dissolution and gas transfer of a bubble in homogeneous and isotropic turbulence flow, extending Farsoiya et al. ( J. Fluid Mech. , vol. 920, 2021, A34). We show that with a bubble size initially within the turbulent inertial subrange, the mass transfer coefficient in turbulence $$k_L$$ is controlled by the smallest scales of the flow, the Kolmogorov $$\eta$$ and Batchelor $$\eta _B$$ microscales, and is independent of the bubble size. This leads to the non-dimensional transfer rate $${Sh}=k_L L^\star /\mathscr {D}_l$$ scaling as $${Sh}/{Sc}^{1/2} \propto {Re}^{3/4}$$ , where $${Re}$$ is the macroscale Reynolds number $${Re} = u_{rms}L^\star /\nu _l$$ , with $$u_{rms}$$ the velocity fluctuations, $L^*$ the integral length scale, $$\nu _l$$ the liquid viscosity, and $${Sc}=\nu _l/\mathscr {D}_l$$ the Schmidt number. This scaling can be expressed in terms of the turbulence dissipation rate $$\epsilon$$ as $${k_L}\propto {Sc}^{-1/2} (\epsilon \nu _l)^{1/4}$$ , in agreement with the model proposed by Lamont & Scott ( AIChE J. , vol. 16, issue 4, 1970, pp. 513–519) and corresponding to the high $Re$ regime from Theofanous et al. ( Intl J. Heat Mass Transfer , vol. 19, issue 6, 1976, pp. 613–624).
more »
« less
- Award ID(s):
- 2122042
- PAR ID:
- 10441236
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 954
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present high-resolution three-dimensional (3-D) direct numerical simulations of breaking waves solving for the two-phase Navier–Stokes equations. We investigate the role of the Reynolds number ( Re , wave inertia relative to viscous effects) and Bond number ( Bo , wave scale over the capillary length) on the energy, bubble and droplet statistics of strong plunging breakers. We explore the asymptotic regimes at high Re and Bo , and compare with laboratory breaking waves. Energetically, the breaking wave transitions from laminar to 3-D turbulent flow on a time scale that depends on the turbulent Re up to a limiting value $$Re_\lambda \sim 100$$ , consistent with the mixing transition in other canonical turbulent flows. We characterize the role of capillary effects on the impacting jet and ingested main cavity shape and subsequent fragmentation process, and extend the buoyant-energetic scaling from Deike et al. ( J. Fluid Mech. , vol. 801, 2016, pp. 91–129) to account for the cavity shape and its scale separation from the Hinze scale, $$r_H$$ . We confirm two regimes in the bubble size distribution, $$N(r/r_H)\propto (r/r_H)^{-10/3}$$ for $$r>r_H$$ , and $$\propto (r/r_H)^{-3/2}$$ for $$rmore » « less
-
null (Ed.)We study bubble motion in a vertical capillary tube under an external flow. Bretherton ( J. Fluid Mech. , vol. 10, issue 2, 1961, pp. 166–188) has shown that, without external flow, a bubble can spontaneously rise when the Bond number ( $${Bo} \equiv \rho g R^2 / \gamma$$ ) is above the critical value $${Bo}_{cr}=0.842$$ , where $$\rho$$ is the liquid density, $$g$$ the gravitational acceleration, $$R$$ the tube radius and $$\gamma$$ the surface tension. It was then shown by Magnini et al. ( Phys. Rev. Fluids , vol. 4, issue 2, 2019, 023601) that the presence of an imposed liquid flow, in the same (upward) direction as buoyancy, accelerates the bubble and thickens the liquid film around it. In this work we carry out a systematic study of the bubble motion under a wide range of upward and downward external flows, focusing on the inertialess regime with Bond numbers above the critical value. We show that a rich variety of bubble dynamics occurs when an external downward flow is applied, opposing the buoyancy-driven rise of the bubble. We reveal the existence of a critical capillary number of the external downward flow ( $${Ca}_l \equiv \mu U_l/\gamma$$ , where $$\mu$$ is the fluid viscosity and $$U_l$$ is the mean liquid speed) at which the bubble arrests and changes its translational direction. Depending on the relative direction of gravity and the external flow, the thickness of the film separating the bubble surface and the tube inner wall follows two distinct solution branches. The results from theory, experiments and numerical simulations confirm the existence of the two solution branches and reveal that the two branches overlap over a finite range of $${Ca}_l$$ , thus suggesting non-unique, history-dependent solutions for the steady-state film thickness under the same external flow conditions. Furthermore, inertialess symmetry-breaking shape profiles at steady state are found as the bubble transits near the tipping points of the solution branches, which are shown in both experiments and three-dimensional numerical simulations.more » « less
-
We investigate how turbulence in liquid affects the rising speed of gas bubbles within the inertial range. Experimentally, we employ stereoscopic tracking of bubbles rising through water turbulence created by the convergence of turbulent jets and characterized with particle image velocimetry performed throughout the measurement volume. We use the spatially varying, time-averaged mean water velocity field to consider the physically relevant bubble slip velocity relative to the mean flow. Over a range of bubble sizes within the inertial range, we find that the bubble mean rise velocity $$\left \langle v_z \right \rangle$$ decreases with the intensity of the turbulence as characterized by its root-mean-square fluctuation velocity, $u'$ . Non-dimensionalized by the quiescent rise velocity $$v_{q}$$ , the average rise speed follows $$\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$$ at high $${\textit {Fr}}$$ , where $${\textit {Fr}}=u'/\sqrt {dg}$$ is a Froude number comparing the intensity of the turbulence to the bubble buoyancy, with $$d$$ the bubble diameter and $$g$$ the acceleration due to gravity. We complement these results by performing numerical integration of the Maxey–Riley equation for a point bubble experiencing nonlinear drag in three-dimensional, homogeneous and isotropic turbulence. These simulations reproduce the slowdown observed experimentally, and show that the mean magnitude of the slip velocity is proportional to the large-scale fluctuations of the flow velocity. Combining the numerical estimate of the slip velocity magnitude with a simple theoretical model, we show that the scaling $$\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$$ originates from a combination of the nonlinear drag and the nearly isotropic behaviour of the slip velocity at large $${\textit {Fr}}$$ that drastically reduces the mean rise speed.more » « less
-
null (Ed.)Abstract The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in pp collisions at $$\sqrt{s} =5.02\ \hbox {TeV}$$ s = 5.02 TeV and p–Pb collisions at $$\sqrt{s_{\mathrm{NN}}} = 5.02\ \hbox {TeV}$$ s NN = 5.02 TeV with the ALICE detector at the LHC is reported. The $$\mathrm{D}^{0}$$ D 0 , $$\mathrm{D}^{+} $$ D + , and $$\mathrm{D}^{*+} $$ D ∗ + mesons, together with their charge conjugates, were reconstructed at midrapidity in the transverse momentum interval $$3< p_\mathrm{T} < 24\ \hbox {GeV}/c$$ 3 < p T < 24 GeV / c and correlated with charged particles having $$p_\mathrm{T} > 0.3\ \hbox {GeV}/c$$ p T > 0.3 GeV / c and pseudorapidity $$|\eta | < 0.8$$ | η | < 0.8 . The properties of the correlation peaks appearing in the near- and away-side regions (for $$\Delta \varphi \approx 0$$ Δ φ ≈ 0 and $$\Delta \varphi \approx \pi $$ Δ φ ≈ π , respectively) were extracted via a fit to the azimuthal correlation functions. The shape of the correlation functions and the near- and away-side peak features are found to be consistent in pp and p–Pb collisions, showing no modifications due to nuclear effects within uncertainties. The results are compared with predictions from Monte Carlo simulations performed with the PYTHIA, POWHEG+PYTHIA, HERWIG, and EPOS 3 event generators.more » « less
An official website of the United States government

