skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges in Automated Debiasing for Toxic Language Detection
Biased associations have been a challenge in the development of classifiers for detecting toxic language, hindering both fairness and accuracy. As potential solutions, we investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection. Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English). Our comprehensive experiments establish that existing methods are limited in their ability to prevent biased behavior in current toxicity detectors. We then propose an automatic, dialect-aware data correction method, as a proof-of-concept. Despite the use of synthetic labels, this method reduces dialectal associations with toxicity. Overall, our findings show that debiasing a model trained on biased toxic language data is not as effective as simply relabeling the data to remove existing biases.  more » « less
Award ID(s):
1714566
PAR ID:
10308662
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When trained on biased datasets, Deep Neural Networks (DNNs) often make predictions based on attributes derived from features spuriously correlated with the target labels. This is especially problematic if these irrelevant features are easier for the model to learn than the truly relevant ones. Many existing approaches, called debiasing methods, have been proposed to address this issue, but they often require predefined bias labels and entail significantly increased computational complexity by incorporating extra auxiliary models. Instead, we provide an orthogonal perspective from the existing approaches, inspired by cognitive science, specifically Global Workspace Theory (GWT). Our method, Debiasing Global Workspace (DGW), is a novel debiasing framework that consists of specialized modules and a shared workspace, allowing for increased modularity and improved debiasing performance. Additionally, DGW enhances the transparency of decision-making processes by visualizing which features of the inputs the model focuses on during training and inference through attention masks. We begin by proposing an instantiation of GWT for the debiasing method. We then outline the implementation of each component within DGW. At the end, we validate our method across various biased datasets, proving its effectiveness in mitigating biases and improving model performance. 
    more » « less
  2. Natural language understanding (NLU) models often suffer from unintended dataset biases. Among bias mitigation methods, ensemble-based debiasing methods, especially product-of-experts (PoE), have stood out for their impressive empirical success. However, previous ensemble-based debiasing methods typically apply debiasing on top-level logits without directly addressing biased attention patterns. Attention serves as the main media of feature interaction and aggregation in PLMs and plays a crucial role in providing robust prediction. In this paper, we propose REsidual Attention Debiasing (READ), an end-to-end debiasing method that mitigates unintended biases from attention. Experiments on three NLU benchmarks show that READ significantly improves the OOD performance of BERT-based models, including +12.9% accuracy on HANS, +11.0% accuracy on FEVER-Symmetric, and +2.7% F1 on PAWS. Detailed analyses demonstrate the crucial role of unbiased attention in robust NLU models and that READ effectively mitigates biases in attention. 
    more » « less
  3. Chatbot systems have improved significantly because of the advances made in language modeling. These machine learning systems follow an end-to-end data-driven learning paradigm and are trained on large conversational datasets. Imperfections or harmful biases in the training datasets can cause the models to learn toxic behavior, and thereby expose their users to harmful responses. Prior work has focused on measuring the inherent toxicity of such chatbots, by devising queries that are more likely to produce toxic responses. In this work, we ask the question: How easy or hard is it to inject toxicity into a chatbot after deployment? We study this in a practical scenario known as Dialog-based Learning (DBL), where a chatbot is periodically trained on recent conversations with its users after deployment. A DBL setting can be exploited to poison the training dataset for each training cycle. Our attacks would allow an adversary to manipulate the degree of toxicity in a model and also enable control over what type of queries can trigger a toxic response. Our fully automated attacks only require LLM-based software agents masquerading as (malicious) users to inject high levels of toxicity. We systematically explore the vulnerability of popular chatbot pipelines to this threat. Lastly, we show that several existing toxicity mitigation strategies (designed for chatbots) can be significantly weakened by adaptive attackers. 
    more » « less
  4. Increased social media use has contributed to the greater prevalence of abusive, rude, and offensive textual comments. Machine learning models have been developed to detect toxic comments online, yet these models tend to show biases against users with marginalized or minority identities (e.g., females and African Americans). Established research in debiasing toxicity classifiers often (1) takes a static or batch approach, assuming that all information is available and then making a one-time decision; and (2) uses a generic strategy to mitigate different biases (e.g., gender and racial biases) that assumes the biases are independent of one another. However, in real scenarios, the input typically arrives as a sequence of comments/words over time instead of all at once. Thus, decisions based on partial information must be made while additional input is arriving. Moreover, social bias is complex by nature. Each type of bias is defined within its unique context, which, consistent with intersectionality theory within the social sciences, might be correlated with the contexts of other forms of bias. In this work, we consider debiasing toxicity detection as a sequential decision-making process where different biases can be interdependent. In particular, we study debiasing toxicity detection with two aims: (1) to examine whether different biases tend to correlate with each other; and (2) to investigate how to jointly mitigate these correlated biases in an interactive manner to minimize the total amount of bias. At the core of our approach is a framework built upon theories of sequential Markov Decision Processes that seeks to maximize the prediction accuracy and minimize the bias measures tailored to individual biases. Evaluations on two benchmark datasets empirically validate the hypothesis that biases tend to be correlated and corroborate the effectiveness of the proposed sequential debiasing strategy. 
    more » « less
  5. Neural machine translation (NMT) systems exhibit limited robustness in handling source-side linguistic variations. Their performance tends to degrade when faced with even slight deviations in language usage, such as different domains or variations introduced by second-language speakers. It is intuitive to extend this observation to encompass dialectal variations as well, but the work allowing the community to evaluate MT systems on this dimension is limited. To alleviate this issue, we compile and release CODET, a contrastive dialectal benchmark encompassing 891 different variations from twelve different languages. We also quantitatively demonstrate the challenges large MT models face in effectively translating dialectal variants. All the data and code have been released. 
    more » « less