skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying High-Potential Work Areas in Engineering for Global Development: Linking Industry Sectors to the Human Development Index
Abstract Those working in Engineering for Global Development seek to improve the conditions in developing countries. A common metric for understanding the development state of a given country is the Human Development Index (HDI), which focuses on three dimensions: health, education, and income. An engineer’s expertise does not always align with any of those dimensions directly, while they still hope to perform impactful work for human development. To discover other areas of expertise that are highly associated with the HDI, correlations and variable selection were performed between all World Development Indicators and the HDI. The resultant associations are presented according to industry sector for a straightforward connection to engineering expertise. The associated areas of expertise can be used during opportunity development as surrogates for focusing on the HDI dimensions themselves. The data analysis shows that work related to “Trade, Transportation, and Utilities,” such as electricity distribution, and exports or imports, “Natural Resources and Mining,” such as energy resources, agriculture, or access to clean water, and “Manufacturing,” in general, are most commonly associated with improvements in the HDI in developing countries. Also, because the associations were discovered at country-level, they direct where geographically particular areas of expertise have been historically associated with improving HDI.  more » « less
Award ID(s):
1761505
PAR ID:
10308726
Author(s) / Creator(s):
 ;  ;  
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
143
Issue:
6
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With limited time and resources available to carry out Engineering for Global Development (EGD) projects, it can be difficult to know where those resources should be allocated to have greater potential for meaningful impact. It is easy to assume that projects should occur in a particular location based on personal experience or where other development projects are taking place. This can be a consideration, but it may not lead to the greatest social impact. Where to work on a project and what problem to work on are key questions in the early stages of product development in the context of EGD. To aid in this process, this article presents a method for assessing global needs to ensure thoughtful use of limited EGD resources. We introduce a method for identifying locations where there is human need, gaps in technological achievement, and what the work environment is in a country. Results of the method are compared to what countries receive the most foreign aid dollars per capita. Measures were calculated using the principal component analysis on data from development agencies. These results can help practitioners in selecting where to undertake development projects with an eye toward targeting locations that may yield high levels of social impact. 
    more » « less
  2. To enable the sustainable use of their ocean resources, capacity for ocean science and observations is important for every coastal nation. In many developing areas of the world, capability for ocean science and observations is not yet adequate to meet management needs. International organizations have employed a variety of capacity development approaches to assist developing countries in building self-sustaining ocean science and observational communities. This article describes the lessons learned from visiting scientist programs conducted for more than a decade by the Partnership for Observation of the Global Ocean (POGO) and the Scientific Committee on Oceanic Research (SCOR) that dispatched ocean scientists to developing countries to train hundreds of individuals in a variety of ocean science and observation topics and techniques. From these programs, SCOR and POGO have learned that training in-country has multiple benefits to trainees, host institutions, and trainers, benefits that are not achievable when students leave their countries. These benefits include more cost-effective training on issues relevant to the host institutions using locally available technology, as well as the ability to reach a large number of trainees. Lessons learned from the POGO and SCOR programs can be used to inform the future capacity-development activities of POGO and SCOR, as well as other organizations, to improve, enhance, and expand the use of in-country training and mentoring. Such approaches could contribute to the capacity development efforts of the UN Decade of Ocean Science for Sustainable Development. 
    more » « less
  3. Increasing digitisation of engineering and social practices has altered the relationship between formal schooling and development of expertise for professional engineering work. What does the development of expertise look like when knowledge is generated and shared at an accelerated pace due to shifts in technology? In this paper, I present case studies of two early career software engineers. Using methodological insights from digital ethnography, I trace their professional journeys over two decades. I empirically demonstrate how the development of engineering expertise is a continuous and perpetual endeavour and engineers learn throughout their lives (lifelong) and across all the different spaces they inhabit at any given time (lifewide). I argue for extending engineering work practices research and research in engineering education more broadly to take larger timescales of learning into account to build a comprehensive understanding of engineering expertise development. 
    more » « less
  4. Most engineering programs in the United States are accredited by ABET under the guidelines known as EC-2000. The EC-2000 framework is broadly based on the continual quality management (CQM) movement in industry where programs are striving to constantly improve the quality of their output, in this case the skills of graduates. Broadly speaking, ABET evaluates engineering programs on eight different criteria; some are related to processes, some to resources, but those central to CQM are program educational objectives, that define hoped for long-term accomplishments of graduates, and outcomes which articulate what students can do when they graduate. Degree programs must convince ABET they have a documented and effective process to improve outcomes to gain accreditation. CQM of course is not the only framework by which educational development can be framed or measured. This paper explores ABET processes through the lens of the economist Amartya Sen’s capability approach, which is broadly applied in the developing world in areas of inequity, poverty, and human rights. The capability approach is often used when a focus on diverse individuals is desirable for understanding aspects of development. Central to Sen’s approach are capabilities and functionings. Capabilities are the resources and supports in an individual’s environment that provide opportunities to pursue a life they value. Functionings are what they actually become and do. Thus capabilities can be thought of as the potential for functionings; alternatively capabilities are opportunities and functionings are outcomes. This paper compares ABET’s accreditation criteria with a published set of capabilities in education. The comparison shows there are some areas where criteria overlap with capabilities, but also several areas where the overlap is low. The capabilities that aligned most with ABET criteria overlap with engineering epistemologies and a view of students as the ‘product’ of engineering education. 
    more » « less
  5. Most engineering programs in the United States are accredited by ABET under the guidelines known as EC-2000. The EC-2000 framework is broadly based on the continual quality management (CQM) movement in industry where programs are striving to constantly improve the quality of their output, in this case the skills of graduates. Broadly speaking, ABET evaluates engineering programs on eight different criteria; some are related to processes, some to resources, but those central to CQM are program educational objectives, that define hoped for long-term accomplishments of graduates, and outcomes which articulate what students can do when they graduate. Degree programs must convince ABET they have a documented and effective process to improve outcomes to gain accreditation. CQM of course is not the only framework by which educational development can be framed or measured. This paper explores ABET processes through the lens of the economist Amartya Sen’s capability approach, which is broadly applied in the developing world in areas of inequity, poverty, and human rights. The capability approach is often used when a focus on diverse individuals is desirable for understanding aspects of development. Central to Sen’s approach are capabilities and functionings. Capabilities are the resources and supports in an individual’s environment that provide opportunities to pursue a life they value. Functionings are what they actually become and do. Thus capabilities can be thought of as the potential for functionings; alternatively capabilities are opportunities and functionings are outcomes. This paper compares ABET’s accreditation criteria with a published set of capabilities in education. The comparison shows there are some areas where criteria overlap with capabilities, but also several areas where the overlap is low. The capabilities that aligned most with ABET criteria overlap with engineering epistemologies and a view of students as the ‘product’ of engineering education. 
    more » « less