skip to main content

Title: A-EXP4: Online Social Policy Learning for Adaptive Robot-Pedestrian Interaction
We study self-supervised adaptation of a robot's policy for social interaction, i.e., a policy for active communication with surrounding pedestrians through audio or visual signals. Inspired by the observation that humans continually adapt their behavior when interacting under varying social context, we propose Adaptive EXP4 (A-EXP4), a novel online learning algorithm for adapting the robot-pedestrian interaction policy. To address limitations of bandit algorithms in adaptation to unseen and highly dynamic scenarios, we employ a mixture model over the policy parameter space. Specifically, a Dirichlet Process Gaussian Mixture Model (DPMM) is used to cluster the parameters of sampled policies and maintain a mixture model over the clusters, hence effectively discovering policies that are suitable to the current environmental context in an unsupervised manner. Our simulated and real-world experiments demonstrate the feasibility of A-EXP4 in accommodating interaction with different types of pedestrians while jointly minimizing social disruption through the adaptation process. While the A-EXP4 formulation is kept general for application in a variety of domains requiring continual adaptation of a robot's policy, we specifically evaluate the performance of our algorithm using a suitcase-inspired assistive robotic platform. In this concrete assistive scenario, the algorithm observes how audio signals produced by the navigational system more » affect the behavior of pedestrians and adapts accordingly. Consequently, we find A-EXP4 to effectively adapt the interaction policy for gently clearing a navigation path in crowded settings, resulting in significant reduction in empirical regret compared to the EXP4 baseline. « less
Authors:
; ; ;
Award ID(s):
1637927
Publication Date:
NSF-PAR ID:
10308745
Journal Name:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Sponsoring Org:
National Science Foundation
More Like this
  1. Consider an assistive system that guides visually impaired users through speech and haptic feedback to their destination. Existing robotic and ubiquitous navigation technologies (e.g., portable, ground, or wearable systems) often operate in a generic, user-agnostic manner. However, to minimize confusion and navigation errors, our real-world analysis reveals a crucial need to adapt theinstructional guidance across different end-users with diverse mobility skills. To address this practical issue in scalable system design, we propose a novel model based reinforcement learning framework for personalizing the system-user interaction experience. When incrementally adapting the system to new users, we propose to use a weighted experts model for addressing data-efficiency limitations in transfer learning with deep models. A real-world dataset of navigation by blind users is used to show that the proposed approach allows for (1) more accurate long-term human behavior prediction (up to 20 seconds into the future) through improved reasoning over personal mobility characteristics, interaction with surrounding obstacles, and the current navigation goal, and (2) quick adaptation at the onset of learning, when data is limited.
  2. Selecting appropriate tutoring help actions that account for both a student’s content mastery and engagement level is essential for effective human tutors, indicating the critical need for these skills in autonomous tutors. In this work, we formulate the robot-student tutoring help action selection problem as the Assistive Tutor partially observable Markov decision process (AT-POMDP). We designed the AT-POMDP and derived its parameters based on data from a prior robot-student tutoring study. The policy that results from solving the ATPOMDP allows a robot tutor to decide upon the optimal tutoring help action to give a student, while maintaining a belief of the student’s mastery of the material and engagement with the task. This approach is validated through a between-subjects field study, which involved 4th grade students (n = 28) interacting with a social robot solving long division problems over five sessions. Students who received help from a robot using the AT-POMDP policy demonstrated significantly greater learning gains than students who received help from a robot with a fixed help action selection policy. Our results demonstrate that this robust computational framework can be used effectively to deliver diverse and personalized tutoring support over time for students.
  3. Navigation assistive technologies have been designed to support individuals with visual impairments during independent mobility by providing sensory augmentation and contextual awareness of their surroundings. Such information is habitually provided through predefned audio-haptic interaction paradigms. However, individual capabilities, preferences and behavior of people with visual impairments are heterogeneous, and may change due to experience, context and necessity. Therefore, the circumstances and modalities for providing navigation assistance need to be personalized to different users, and through time for each user. We conduct a study with 13 blind participants to explore how the desirability of messages provided during assisted navigation varies based on users' navigation preferences and expertise. The participants are guided through two different routes, one without prior knowledge and one previously studied and traversed. The guidance is provided through turn-by-turn instructions, enriched with contextual information about the environment. During navigation and follow-up interviews, we uncover that participants have diversifed needs for navigation instructions based on their abilities and preferences. Our study motivates the design of future navigation systems capable of verbosity level personalization in order to keep the users engaged in the current situational context while minimizing distractions.
  4. Across a wide variety of domains, artificial agents that can adapt and personalize to users have potential to improve and transform how social services are provided. Because of the need for personalized interaction data to drive this process, long-term (or longitudinal) interactions between users and agents, which unfold over a series of distinct interaction sessions, have attracted substantial research interest. In recognition of the expanded scope and structure of a long-term interaction, researchers are also adjusting the personalization models and algorithms used, orienting toward “continual learning” methods, which do not assume a stationary modeling target and explicitly account for the temporal context of training data. In parallel, researchers have also studied the effect of “multitask personalization,” an approach in which an agent interacts with users over multiple different tasks contexts throughout the course of a long-term interaction and learns personalized models of a user that are transferrable across these tasks. In this paper, we unite these two paradigms under the framework of “Lifelong Personalization,” analyzing the effect of multitask personalization applied to dynamic, non-stationary targets. We extend the multi-task personalization approach to the more complex and realistic scenario of modeling dynamic learners over time, focusing in particular on interactive scenariosmore »in which the modeling agent plays an active role in teaching the student whose knowledge the agent is simultaneously attempting to model. Inspired by the way in which agents use active learning to select new training data based on domain context, we augment a Gaussian Process-based multitask personalization model with a mechanism to actively and continually manage its own training data, allowing a modeling agent to remove or reduce the weight of observed data from its training set, based on interactive context cues. We evaluate this method in a series of simulation experiments comparing different approaches to continual and multitask learning on simulated student data. We expect this method to substantially improve learning in Gaussian Process models in dynamic domains, establishing Gaussian Processes as another flexible modeling tool for Long-term Human-Robot Interaction (HRI) Studies.« less
  5. The predominant use of wireless access networks is for media streaming applications. However, current access networks treat all packets identically, and lack the agility to determine which clients are most in need of service at a given time. Software reconfigurability of networking devices has seen wide adoption, and this in turn implies that agile control policies can be now instantiated on access networks. Exploiting such reconfigurability requires the design of a system that can enable a configuration, measure the impact on the application performance (Quality of Experience), and adaptively select a new configuration. Effectively, this feedback loop is a Markov Decision Process whose parameters are unknown. The goal of this work is to develop QFlow, a platform that instantiates this feedback loop, and instantiate a variety of control policies over it. We use the popular application of video streaming over YouTube as our use case. Our context is priority queueing, with the action space being that of determining which clients should be assigned to each queue at each decision period. We first develop policies based on model-based and model-free reinforcement learning. We then design an auction-based system under which clients place bids for priority service, as well as a moremore »structured index-based policy. Through experiments, we show how these learning-based policies on QFlow are able to select the right clients for prioritization in a high-load scenario to outperform the best known solutions with over 25% improvement in QoE, and a perfect QoE score of 5 over 85% of the time.« less