skip to main content


Title: How many particles make up a chaotic many-body quantum system?
We numerically investigate the minimum number of interacting particles,which is required for the onset of strong chaos in quantum systemson a one-dimensional lattice with short-range and long-range interactions.We consider multiple system sizes which are at least three times largerthan the number of particles and find that robust signatures of quantumchaos emerge for as few as 4 particles in the case of short-rangeinteractions and as few as 3 particles for long-range interactions,and without any apparent dependence on the size of the system.  more » « less
Award ID(s):
1936006
NSF-PAR ID:
10308884
Author(s) / Creator(s):
 ;  ;  
Date Published:
Journal Name:
SciPost Physics
Volume:
10
Issue:
4
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that, in a many‐body system, all particles can be strongly confined to the initially occupied sites for a time that scales as a high power of the ratio of the bandwidth of site energies to the hopping amplitude. Such time‐domain formulation is complementary to the formulation of the many‐body localization of all stationary states with a large localization length. The long localization lifetime is achieved by constructing a periodic sequence of site energies with a large period in a one‐dimensional chain. The scaling of the localization lifetime is independent of the number of particles for a broad range of the coupling strength. The analytical results are confirmed by numerical calculations.image

     
    more » « less
  2. Stimulated by the effect of the nearest neighbor interactions in vehicular traffic and motor proteins, we study a 1D driven lattice gas model, in which the nearest neighbor particle interactions are taken in accordance with the thermodynamic concepts. The non-equilibrium steady-state properties of the system are analyzed under both open and periodic boundary conditions using a combination of cluster mean-field analysis and Monte Carlo simulations. Interestingly, the fundamental diagram of current versus density shows a complex behavior with a unimodal dependence for attractions and weak repulsions that turns into the bimodal behavior for stronger repulsive interactions. Specific details of system-reservoir coupling for the open system have a strong effect on the stationary phases. We produce the steady-state phase diagrams for the bulk-adapted coupling to the reservoir using the minimum and maximum current principles. The strength and nature of interaction energy has a striking influence on the number of stationary phases. We observe that interactions lead to correlations having a strong impact on the system dynamical properties. The correlation between any two sites decays exponentially as the distance between the sites increases. Moreover, they are found to be short-range for repulsions and long-range for attractions. Our results also suggest that repulsions and attractions asymmetrically modify the dynamics of interacting particles in exclusion processes. 
    more » « less
  3. Structural investigations of amorphous and nanocrystalline phases forming in solution are historically challenging. Few methods are capable of in situ atomic structural analysis and rigorous control of the system. A mixed-flow reactor (MFR) is used for total X-ray scattering experiments to examine the short- and long-range structure of phases in situ with pair distribution function (PDF) analysis. The adaptable experimental setup enables data collection for a range of different system chemistries, initial supersaturations and residence times. The age of the sample during analysis is controlled by adjusting the flow rate. Faster rates allow for younger samples to be examined, but if flow is too fast not enough data are acquired to average out excess signal noise. Slower flow rates form older samples, but at very slow speeds particles settle and block flow, clogging the system. Proper background collection and subtraction is critical for data optimization. Overall, this MFR method is an ideal scheme for analyzing the in situ structures of phases that form during crystal growth in solution. As a proof of concept, high-resolution total X-ray scattering data of amorphous and crystalline calcium phosphates and amorphous calcium carbonate were collected for PDF analysis. 
    more » « less
  4. Abstract

    The Dicke model—a paradigmatic example of superradiance in quantum optics—describes an ensemble of atoms which are collectively coupled to a leaky cavity mode. As a result of the cooperative nature of these interactions, the system’s dynamics is captured by the behavior of a single mean-field, collective spin. In this mean-field limit, it has recently been shown that the interplay between photon losses and periodic driving of light–matter coupling can lead to time-crystalline-like behavior of the collective spin (Gonget al2018Phys. Rev. Lett.120040404). In this work, we investigate whether such a Dicke time crystal (TC) is stable to perturbations that explicitly break the mean-field solvability of the conventional Dicke model. In particular, we consider the addition of short-range interactions between the atoms which breaks the collective coupling and leads to complex many-body dynamics. In this context, the interplay between periodic driving, dissipation and interactions yields a rich set of dynamical responses, including long-lived and metastable Dicke-TCs, where losses can cool down the many-body heating resulting from the continuous pump of energy from the periodic drive. Specifically, when the additional short-range interactions are ferromagnetic, we observe time crystalline behavior at non-perturbative values of the coupling strength, suggesting the possible existence of stable dynamical order in a driven-dissipative quantum many-body system. These findings illustrate the rich nature of novel dynamical responses with many-body character in quantum optics platforms.

     
    more » « less
  5. Abstract

    Black carbon aerosol emissions are recognized as contributors to global warming and air pollution. There remains, however, a lack of techniques to remotely measure black carbon aerosol particles with high range and time resolution. This article presents a direct and contact-free remote technique to estimate the black carbon aerosol number and mass concentration at a few meters from the emission source. This is done using the Colibri instrument based on a novel technique, referred to here as Picosecond Short-Range Elastic Backscatter Lidar (PSR-EBL). To address the complexity of retrieving lidar products at short measurement ranges, we apply a forward inversion method featuring radiometric lidar calibration. Our method is based on an extension of a well-established light-scattering model, the Rayleigh–Debye–Gans for Fractal-Aggregates (RDG-FA) theory, which computes an analytical expression of lidar parameters. These parameters are the backscattering cross-sections and the lidar ratio for black carbon fractal aggregates. Using a small-scale Jet A-1 kerosene pool fire, we demonstrate the ability of the technique to quantify the aerosol number and mass concentration with centimetre range-resolution and millisecond time-resolution.

     
    more » « less