skip to main content


Title: Recent Applications of Dual-Stimuli Responsive Chitosan Hydrogel Nanocomposites as Drug Delivery Tools
Polysaccharides are a versatile class of macromolecules that are involved in many biological interactions critical to life. They can be further modified for added functionality. Once derivatized, these polymers can exhibit new chemical properties that can be further optimized for applications in drug delivery, wound healing, sensor development and others. Chitosan, derived from the N-deacetylation of chitin, is one example of a polysaccharide that has been functionalized and used as a major component of polysaccharide biomaterials. In this brief review, we focus on one aspect of chitosan’s utility, namely we discuss recent advances in dual-responsive chitosan hydrogel nanomaterials.  more » « less
Award ID(s):
2100978
PAR ID:
10309192
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Molecules
Volume:
26
Issue:
16
ISSN:
1420-3049
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Catechol-based materials possess diverse properties that are especially well-suitable for redox-based bioelectronics. Previous top-down, systems-level property measurements have shown that catechol-polysaccharide films ( e.g. , catechol-chitosan films) are redox-active and allow electrons to flow through the catechol/quinone moieties via thermodynamically-constrained redox reactions. Here, we report that catechol-chitosan films are also photothermally responsive and enable near infrared (NIR) radiation to be transduced into heat. When we simultaneously stimulated catechol-chitosan films with NIR and redox inputs, times-series measurements showed that the responses were reversible and largely independent. Fundamentally, these top-down measurements suggest that the flow of energy through catechol-based materials via the redox-based molecular modality and the electromagnetic-based optical modality can be independent. Practically, this work further illustrates the potential of catecholic materials for bridging bio-device communication because it enables communication through both short-range redox modalities and long-range electromagnetic modalities. 
    more » « less
  2. Abstract

    A dynamically responsive hydrogel medium is prepared from two self‐assembling components, a polysaccharide (chitosan) and a surfactant (sodium dodecyl sulfate; SDS). It is shown that this medium can be patterned using an electrode “pen” to reconfigure supramolecular structure: cathodic writing induces neutral chitosan chains to form a crystalline network, while anodic writing generates cationic chitosan chains that electrostatically crosslink with anionic SDS micelles. Both supramolecular structures are re‐configurable and each is stabilized by structure‐induced shifts in chitosan's pKa, thus electronically written patterns can be erased, new patterns can be written, and patterns can be written in three dimensions. Further, it is shown that NaCl‐induced morphological transitions of the SDS micelles allow patterns to be reversibly concealed or revealed. To demonstrate the versatility of this medium for information storage, a quick response (QR) code is electronically written and it is shown that this code can be recognized by a standard cellphone app. This QR code can be concealed by making the medium opaque (i.e., by obscuring the pattern) or by making the pattern evanescent (i.e., by making pattern invisible). Overall, this work demonstrates that a dynamically responsive medium composed of simple, safe and sustainable components can be reversibly patterned with spatial and quantitative control using top‐down electronic inputs.

     
    more » « less
  3. Ionically complexed nanoparticles were prepared from an anionic polysaccharide drug, heparin, entrapped by a positively charged chitosan polysaccharide. In this study, the encapsulation of heparin was studied to optimize properties needed for its oral drug delivery. Chitosan, used in a variety of biomedical applications, was selected as a cationic polymer for heparin encapsulation. These particles were prepared with a slightly positive charge and an appropriate size for oral drug delivery. The release profiles of these ionically complexed nanoparticles were improved by using FDA approved stabilizers, such as pluronic non-ionic surfactant and polyvinyl alcohol. These results obtained in vitro suggest that these stabilized, ionically complexed nanoparticles may be well-suited for the oral drug delivery of heparin into the gastrointestinal tract. 
    more » « less
  4. The United Nations (UN) estimates that more than one billion people in this world do not have access to safe drinking water due to microbial hazards and it kills more than 7.6 million children every year via waterborne diseases. Driven by the need for the removal and inactivation of waterborne pathogens in drinking water, we report the chemical design and details of microscopic characterization of a bio-conjugated chitosan attached carbon nanotube based three dimensional (3D) nanoporous architecture, which has the capability for effective separation and complete disinfection of waterborne pathogens from environmental water samples. In the reported design, chitosan, a biodegradable antimicrobial polysaccharide with an architecture-forming ability has been used for the formation of 3D pores as channels for water passage, as well as to increase the permeability on the inner and outer architectures for killing Rotavirus and Shigella waterborne pathogens. On the other hand, due to their large surface area, CNTs have been wrapped by chitosan to enhance the adsorption capability of the architecture for the separation and removal of pathogens from water. The reported data show that the anti- Rotavirus VP7 antibody and LL-37 antimicrobial peptide conjugated chitosan–CNT architecture can be used for efficient separation, identification and 100% eradication of Rotavirus and Shigella waterborne pathogens from water samples of different sources. A detailed mechanism for the separation and inactivation of waterborne pathogens using the bio-conjugated chitosan based 3D architecture has been discussed using microscopic and spectroscopic studies. Reported experimental data demonstrate that the multifunctional bio-conjugated 3D architecture has good potential for use in waterborne pathogen separation and inactivation technology. 
    more » « less
  5. null (Ed.)
    Hydrogels constructed with functionalized polysaccharides are of interest in a multitude of applications, chiefly the design of therapeutic and regenerative formulations. Tailoring the chemical modification of polysaccharide-based hydrogels to achieve specific drug release properties involves the optimization of many tunable parameters, including (i) the type, degree ( χ ), and pattern of the functional groups, (ii) the water–polymer ratio, and (iii) the drug payload. To guide the design of modified polysaccharide hydrogels for drug release, we have developed a computational toolbox that predicts the structure and physicochemical properties of acylated chitosan chains, and their impact on the transport of drug molecules. Herein, we present a multiscale coarse-grained model to investigate the structure of networks of chitosan chains modified with acetyl, butanoyl, or heptanoyl moieties, as well as the diffusion of drugs doxorubicin (Dox) and gemcitabine (Gem) through the resulting networks. The model predicts the formation of different network structures, in particular the hydrophobically-driven transition from a uniform to a cluster/channel morphology and the formation of fibers of chitin chains. The model also describes the impact of structural and physicochemical properties on drug transport, which was confirmed experimentally by measuring Dox and Gem diffusion through an ensemble of modified chitosan hydrogels. 
    more » « less