skip to main content

Title: Close-up view of a luminous star-forming galaxy at z = 2.95
Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02  − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1  − 0 1 ), (1 2  − 0 1 ), and (1 0  − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02  − 1 11 ) and (2 20  − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2  − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement of more » the total mass of molecular gas and an anchor for a CO excitation analysis. In addition, we present Hubble Space Telescope imaging that reveals the foreground lensing galaxy in the near-infrared (1.15  μ m). Together with photometric data from the Gran Telescopio Canarias, we derive a photometric redshift of z phot = 0.9 −0.5 +0.3 for the foreground lensing galaxy. Modeling the lensing of HerBS-89a, we reconstruct the dust continuum (magnified by a factor μ  ≃ 5.0) and molecular emission lines (magnified by μ  ∼ 4 − 5) in the source plane, which probe scales of ∼0 . ″1 (or 800 pc). The 12 CO(9 − 8) and H 2 O(2 02  − 1 11 ) emission lines have comparable spatial and kinematic distributions; the source-plane reconstructions do not clearly distinguish between a one-component and a two-component scenario, but the latter, which reveals two compact rotating components with sizes of ≈1 kpc that are likely merging, more naturally accounts for the broad line widths observed in HerBS-89a. In the core of HerBS-89a, very dense gas with n H 2  ∼ 10 7 − 9 cm −3 is revealed by the NH 2 emission lines and the possible HCN(11 − 10) absorption line. HerBS-89a is a powerful star forming galaxy with a molecular gas mass of M mol  = (2.1 ± 0.4) × 10 11   M ⊙ , an infrared luminosity of L IR  = (4.6 ± 0.4) × 10 12   L ⊙ , and a dust mass of M dust  = (2.6 ± 0.2) × 10 9   M ⊙ , yielding a dust-to-gas ratio δ GDR  ≈ 80. We derive a star formation rate SFR = 614 ± 59  M ⊙ yr −1 and a depletion timescale τ depl  = (3.4 ± 1.0) × 10 8 years. The OH + and CH + absorption lines, which trace low (∼100 cm −3 ) density molecular gas, all have their main velocity component red-shifted by Δ V  ∼ 100 km s −1 relative to the global CO reservoir. We argue that these absorption lines trace a rare example of gas inflow toward the center of a galaxy, indicating that HerBS-89a is accreting gas from its surroundings. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Astronomy & Astrophysics
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report new observations toward the hyperluminous dusty starbursting major merger ADFS-27 ( z  = 5.655), using the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). We detect CO ( J  = 2 → 1), CO ( J  = 8 → 7), CO ( J  = 9 → 8), CO ( J  = 10 → 9), and H 2 O (3 12  → 2 21 ) emission, and a P Cygni−shaped OH + (1 1  → 0 1 ) absorption/emission feature. We also tentatively detect H 2 O (3 21  → 3 12 ) and OH + (1 2 → 0 1 ) emission and CH + ( J  = 1 → 0) absorption. We find a total cold molecular mass of M gas  = (2.1 ± 0.2) × 10 11 ( α CO /1.0) M ⊙ . We also find that the excitation of the star-forming gas is overall moderate for a z > 5 dusty starburst, which is consistent with its moderate dust temperature. A high-density, high kinetic temperature gas component embedded in the gas reservoir is required to fully explain the CO line ladder. This component is likely associated with the “maximum starburst” nuclei in the two merging galaxies, which are separated by only 140 ± 13 km s −1 along the line of sightmore »and 9.0 kpc in projection. The kinematic structure of both components is consistent with galaxy disks, but this interpretation remains limited by the spatial resolution of the current data. The OH + features are only detected toward the northern component, which is also the one that is more enshrouded in dust and thus remains undetected up to 1.6 μ m even in our sensitive new Hubble Space Telescope Wide Field Camera 3 imaging. The absorption component of the OH + line is blueshifted and peaks near the CO and continuum emission peak, while the emission is redshifted and peaks offset by 1.7 kpc from the CO and continuum emission peak, suggesting that the gas is associated with a massive molecular outflow from the intensely star-forming nucleus that supplies 125 M ⊙ yr −1 of enriched gas to its halo.« less
  2. Aims . We present and study spatially resolved imaging obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) of multiple 12 CO( J  = 6 − 5, 8−7, and 9−8) and two H 2 O(2 02 −1 11 and 2 11 −2 02 ) emission lines and cold dust continuum toward the gravitationally lensed dusty star-forming galaxy SPT 0346-52 at z  = 5.656. Methods . Using a visibility-domain source-plane reconstruction we probe the structure and dynamics of the different components of the interstellar medium (ISM) in this galaxy down to scales of 1 kpc in the source plane. Results . Measurements of the intrinsic sizes of the different CO emission lines indicate that the higher J transitions trace more compact regions in the galaxy. Similarly, we find smaller dust continuum intrinsic sizes with decreasing wavelength, based on observations at rest frame 130, 300, and 450 μ m. The source shows significant velocity structure, and clear asymmetry where an elongated structure is observed in the source plane with significant variations in their reconstructed sizes. This could be attributed to a compact merger or turbulent disk rotation. The differences in velocity structure through the different line tracers, however, hint at the former scenario in agreement with previousmore »[CII] line imaging results. Measurements of the CO line ratios and magnifications yield significant variations as a function of velocity, suggesting that modeling of the ISM using integrated values could be misinterpreted. Modeling of the ISM in SPT 0346-52 based on delensed fluxes indicates a highly dense and warm medium, qualitatively similar to that observed in high-redshift quasar hosts.« less
  3. Abstract

    We report a Karl G. Jansky Very Large Array search for redshifted CO(1–0) emission from three Hi-absorption-selected galaxies atz≈ 2, identified earlier in their CO(3–2) or CO(4–3) emission. We detect CO(1–0) emission from DLA B1228-113 atz≈ 2.1933 and DLA J0918+1636 atz≈ 2.5848; these are the first detections of CO(1–0) emission in high-zHi-selected galaxies. We obtain high molecular gas masses,Mmol≈ 1011× (αCO/4.36)M, for the two objects with CO(1–0) detections, which are a factor of ≈1.5–2 lower than earlier estimates. We determine the excitation of the mid-JCO rotational levels relative to theJ= 1 level,rJ1, in Hi-selected galaxies for the first time, obtainingr31= 1.00 ± 0.20 andr41= 1.03 ± 0.23 for DLA J0918+1636, andr31= 0.86 ± 0.21 for DLA B1228-113. These values are consistent with thermal excitation of theJ= 3 andJ= 4 levels. The excitation of theJ= 3 level in the Hi-selected galaxies is similar to that seen in massive main-sequence and submillimeter galaxies atz≳2, but higher than that in main-sequence galaxies atz≈ 1.5; the higher excitation of the galaxies atz≳ 2 is likely to be due to their higher star formation rate (SFR) surface density. We use Hubble Space Telescope Wide Field Camera 3 imaging to detect the rest-frame near-ultraviolet (NUV)more »emission of DLA B1228-113, obtaining an NUV SFR of 4.44 ± 0.47Myr−1, significantly lower than that obtained from the total infrared luminosity, indicating significant dust extinction in thez≈ 2.1933 galaxy.

    « less
  4. We studied the molecular gas properties of AzTEC/C159, a star-forming disk galaxy at $z=4.567$. We secured $^{12}$CO molecular line detections for the $J=2\to1$ and $J=5\to4$ transitions using the Karl G. Jansky VLA and the NOEMA interferometer. The broad (FWHM$\sim750\,{\rm km\,s}^{-1}$) and tentative double-peaked profiles of both $^{12}$CO lines are consistent with an extended molecular gas reservoir, which is distributed in a rotating disk as previously revealed from [CII] 158$\mu$m line observations. Based on the $^{12}$CO(2$\to$1) emission line we derived $L'_{\rm{CO}}=(3.4\pm0.6)\times10^{10}{\rm \,K\,km\,s}^{-1}{\rm \,pc}^{2}$, that yields a molecular gas mass of $M_{\rm H_2 }(\alpha_{\rm CO}/4.3)=(1.5\pm0.3)\times 10^{11}{\rm M}_\odot$ and unveils a gas-rich system with $\mu_{\rm gas}(\alpha_{\rm CO}/4.3)\equiv M_{\rm H_2}/M_\star=3.3\pm0.7$. The extreme star formation efficiency (SFE) of AzTEC/C159, parametrized by the ratio $L_{\rm{IR}}/L'_{\rm{CO}}=(216\pm80)\, {\rm L}_{\odot}{\rm \,(K\,km\,s}^{-1}{\rm \,pc}^{2})^{-1}$, is comparable to merger-driven starbursts such as local ultra-luminous infrared galaxies (ULIRGs) and SMGs. Likewise, the $^{12}$CO(5$\to$4)/CO(2$\to$1) line brightness temperature ratio of $r_{52}= 0.55\pm 0.15$ is consistent with high excitation conditions, similar to that observed in SMGs. We constrained the value for the $L'_{\text{CO}}-{\rm H}_2$ mass conversion factor in AzTEC/C159, i.e. $\alpha_{\text{CO}}=3.9^{+2.7}_{-1.3}{\rm \,M}_{\odot}{\rm \,K}^{-1}{\rm \,km}^{-1}{\rm \,s\,pc}^{-2}$, that is consistent with a self-gravitating molecular gas distribution as observed in local star-forming disk galaxies. Cold gas streams from cosmologicalmore »filaments might be fueling a gravitationally unstable gas-rich disk in AzTEC/C159, which breaks into giant clumps forming stars as efficiently as in merger-driven systems and generate high gas excitation.« less
  5. We use a combination of new NOrthern Extended Millimeter Array (NOEMA) observations of the pair of [CI] transitions, the CO(7-6) line, and the dust continuum, in addition to ancillary CO(1-0) and CO(3-2) data, to study the molecular gas properties of Q1700-MD94. This is a massive, main-sequence galaxy at z  ≈ 2. We find that for a reasonable set of assumptions for a typical massive star-forming galaxy, the CO(1-0), the [CI](1-0) and the dust continuum yield molecular gas masses that are consistent within a factor of ∼2. The global excitation properties of the molecular gas as traced by the [CI] and CO transitions are similar to those observed in other massive star-forming galaxies at z  ∼ 2. Our large velocity gradient modeling using RADEX of the CO and [CI] spectral line energy distributions suggests the presence of relatively warm ( T kin  = 41 K), dense ( n H 2  = 8 × 10 3  cm −3 ) molecular gas, comparable to the high-excitation molecular gas component observed in main-sequence star-forming galaxies at z  ∼ 1. The galaxy size in the CO(1-0) and CO(7-6) line emission is comparable, which suggests that the highly excited molecular gas is distributed throughout the disk, powered by intense star formation activity. Amore »confirmation of this scenario will require spatially resolved observations of the CO and [CI] lines, which can now be obtained with NOEMA upgraded capabilities.« less