skip to main content


Title: GBT/Argus Observations of Molecular Gas in the Inner Regions of IC 342
Abstract

We report observations of the ground state transitions of12CO,13CO, C18O, HCN, and HCO+at 88–115 GHz in the inner region of the nearby galaxy IC 342. These data were obtained with the 16 pixel spectroscopic focal plane array Argus on the 100 m Robert C. Byrd Green Bank Telescope (GBT) at 6″–9″ resolution. In the nuclear bar region, the intensity distributions of12CO(1–0) and13CO(1–0) emission trace moderate densities, and differ from the dense gas distributions sampled in C18O(1–0), HCN(1–0), and HCO+(1–0). We observe a constant HCN(1–0)-to-HCO+(1–0) ratio of 1.2 ± 0.1 across the whole ∼1 kpc bar. This indicates that the HCN(1–0) and HCO+(1–0) lines have intermediate optical depth, and that the correspondingnH2of the gas producing the emission is of order 104.5−6cm−3. We show that HCO+(1–0) is thermalized and HCN(1–0) is close to thermalization. The very tight correlation between the HCN(1–0) and HCO+(1–0) intensities across the 1 kpc bar suggests that this ratio is more sensitive to the relative abundance of the two species than to the gas density. We confirm an angular offset (∼10″) between the spatial distribution of molecular gas and the star formation sites. Finally, we find a breakdown of theLIRLHCNcorrelation at high spatial resolution due to the effect of incomplete sampling of star-forming regions by HCN emission in IC 342. The scatter of theLIRLHCNrelation decreases as the spatial scale increases from 10″ to 30″ (170–510 pc), and is comparable to the scatter of the global relation at a scale of 340 pc.

 
more » « less
NSF-PAR ID:
10494368
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
963
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 117
Size(s):
["Article No. 117"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio12/13I[12CO(J=10)]/I[13CO(J=10)]and the properties of the stars and ionized gas. Higher12/13values are found in interacting galaxies compared to those in noninteracting galaxies. The global12/13slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged12/13profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of12/13are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged12/13increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged12/13does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks,12/13is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on12/13, which further complicates the interpretations of12/13variations.

     
    more » « less
  2. Abstract

    We present a new upper limit on the cosmic molecular gas density atz= 2.4–3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1–0) line emission of 0.129 Jy km s−1. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosityLCOof eBOSS quasars of ≤1.26 × 1011K km pc2s−1, or an average molecular gas densityρH2in regions of the Universe containing a quasar of ≤1.52 × 108McMpc−3. TheLCOupper limit falls among CO line luminosities obtained from individually targeted quasars in the COMAP redshift range, and theρH2value is comparable to upper limits obtained from other line intensity mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5 yr COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both as a technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data.

     
    more » « less
  3. Abstract

    We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are9.35.4+4.6and4.22.0+1.9Mpc2(Kkms1)1, respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength (U¯). Among them,U¯, ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity,U¯, and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relationsαCO(21)Σ0.5andαCO(10)Σ0.2. The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.

     
    more » « less
  4. Abstract

    We use ALMA observations of CO(2–1) in 13 massive (M*≳ 1011M) poststarburst galaxies atz∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, anguLarmomentum, and Evolution (SQuIGGLE) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withMH2109M. Given their high stellar masses, this mass limit corresponds to an average gas fraction offH2MH2/M*7%or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theDn4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support this empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, theSQuIGGLEgalaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations.

     
    more » « less
  5. Abstract

    We measure the molecular-to-atomic gas ratio,Rmol, and the star formation rate (SFR) per unit molecular gas mass, SFEmol, in 38 nearby galaxies selected from the Virgo Environment Traced in CO (VERTICO) survey. We stack ALMA12CO (J= 2−1) spectra coherently using Hivelocities from the VIVA survey to detect faint CO emission out to galactocentric radiirgal∼ 1.2r25. We determine the scale lengths for the molecular and stellar components, finding a ∼3:5 relation compared to ∼1:1 in field galaxies, indicating that the CO emission is more centrally concentrated than the stars. We computeRmolas a function of different physical quantities. While the spatially resolvedRmolon average decreases with increasing radius, we find that the mean molecular-to-atomic gas ratio within the stellar effective radiusRe,Rmol(r<Re), shows a systematic increase with the level of Hi, truncation and/or asymmetry (HIperturbation). Analysis of the molecular- and the atomic-to-stellar mass ratios withinRe,Rmol(r<Re)andRatom(r<Re), shows that VERTICO galaxies have increasingly lowerRatom(r<Re)for larger levels of HIperturbation (compared to field galaxies matched in stellar mass), but no significant change inRmol(r<Re). We also measure a clear systematic decrease of the SFEmolwithinRe, SFEmol(r<Re), with increasingly perturbed Hi. Therefore, compared to field galaxies from the field, VERTICO galaxies are more compact in CO emission in relation to their stellar distribution, but increasingly perturbed atomic gas increases theirRmoland decreases the efficiency with which their molecular gas forms stars.

     
    more » « less