- Award ID(s):
- 1910107
- Publication Date:
- NSF-PAR ID:
- 10330876
- Journal Name:
- The Astrophysical Journal
- Volume:
- 907
- Issue:
- 2
- Page Range or eLocation-ID:
- 62
- ISSN:
- 0004-637X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02 − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1 − 0 1 ), (1 2 − 0 1 ), and (1 0 − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02 − 1 11 ) and (2 20 − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2 − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement ofmore »
-
Abstract We report the detection of 23 OH + 1 → 0 absorption, emission, or P-Cygni-shaped lines and CO( J = 9→8) emission lines in 18 Herschel-selected z = 2–6 starburst galaxies with the Atacama Large Millimeter/submillimeter Array and the NOrthern Extended Millimeter Array, taken as part of the Gas And Dust Over cosmic Time Galaxy Survey. We find that the CO( J = 9→8) luminosity is higher than expected based on the far-infrared luminosity when compared to nearby star-forming galaxies. Together with the strength of the OH + emission components, this may suggest that shock excitation of warm, dense molecular gas is more prevalent in distant massive dusty starbursts than in nearby star-forming galaxies on average, perhaps due to an impact of galactic winds on the gas. OH + absorption is found to be ubiquitous in massive high-redshift starbursts, and is detected toward 89% of the sample. The majority of the sample shows evidence for outflows or inflows based on the velocity shifts of the OH + absorption/emission, with a comparable occurrence rate of both at the resolution of our observations. A small subsample appears to show outflow velocities in excess of their escape velocities. Thus, starburst-driven feedback appearsmore »
-
We report the serendipitous discovery of a dusty, starbursting galaxy at z=5.667 (called CRLE hereafter), in close physical association to the "normal" Main Sequence galaxy HZ10 at z=5.654. CRLE was identified by detection of [CII], [NII] and CO(2-1) line emission, making it the highest redshift, most luminous starburst in the COSMOS field. This massive, dusty galaxy appears to be forming stars at a rate of at least 1500$\,M_\odot$ yr$^{-1}$ in a compact region only ~3 kpc in diameter. The dynamical and dust emission properties of CRLE suggest an ongoing merger driving the starburst, in a potentially intermediate stage relative to other known dusty galaxies at the same epoch. The ratio of [CII] to [NII] may suggest that an important contribution to the [CII] emission comes from a diffuse ionized gas component, which could be more extended than the dense, starbursting gas. CRLE appears to be located in a significant galaxy overdensity at the same redshift, potentially associated with a large scale cosmic structure recently identified in a Lyman Alpha Emitter survey. This overdensity suggests that CRLE and HZ10 reside in a protocluster environment, offering the tantalizing opportunity to study the effect of a massive starburst on protocluster star formation. Ourmore »
-
Imaging the molecular interstellar medium in a gravitationally lensed star-forming galaxy at z = 5.7Aims . We present and study spatially resolved imaging obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) of multiple 12 CO( J = 6 − 5, 8−7, and 9−8) and two H 2 O(2 02 −1 11 and 2 11 −2 02 ) emission lines and cold dust continuum toward the gravitationally lensed dusty star-forming galaxy SPT 0346-52 at z = 5.656. Methods . Using a visibility-domain source-plane reconstruction we probe the structure and dynamics of the different components of the interstellar medium (ISM) in this galaxy down to scales of 1 kpc in the source plane. Results . Measurements of the intrinsic sizes of the different CO emission lines indicate that the higher J transitions trace more compact regions in the galaxy. Similarly, we find smaller dust continuum intrinsic sizes with decreasing wavelength, based on observations at rest frame 130, 300, and 450 μ m. The source shows significant velocity structure, and clear asymmetry where an elongated structure is observed in the source plane with significant variations in their reconstructed sizes. This could be attributed to a compact merger or turbulent disk rotation. The differences in velocity structure through the different line tracers, however, hint at the former scenario in agreement with previousmore »
-
Abstract We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-
J CO (1–0, 2–1 and 4–3) and [C i ] (1–0) mapping, which we use to trace CO excitation viaR 42=I CO(4−3)/I CO(2−1)andR 21=I CO(2−1)/I CO(1−0)and dissociation viaR CICO=I [CI](1−0)/I CO(2−1)at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lowerR 42) and increased signatures of dissociation (higherR CICO) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compareR 42andR CICOwith local conditions across the regions and find that both correlate with near-IR 2μ m emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3μ m) and dust continuum (21μ m) emission. In general,R CICOexhibits ∼0.1 dex tighter correlations thanR 42, suggestingC i to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4–3). Our results are consistent with a scenario where gas flows into the two armmore »