skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional materials and devices by self-assembly
The field of self-assembly has moved far beyond early work, where the focus was primarily the resultant beautiful two- and three-dimensional structures, to a focus on forming materials and devices with important properties either otherwise not available, or only available at great cost. Over the last few years, materials with unprecedented electronic, photonic, energy-storage, and chemical separation functionalities were created with self-assembly, while at the same time, the ability to form even more complex structures in two and three dimensions has only continued to advance. Self-assembly crosscuts all areas of materials. Functional structures have now been realized in polymer, ceramic, metallic, and semiconducting systems, as well as composites containing multiple classes of materials. As the field of self-assembly continues to advance, the number of highly functional systems will only continue to grow and make increasingly greater impacts in both the consumer and industrial space.  more » « less
Award ID(s):
1905290
PAR ID:
10309232
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
MRS Bulletin
Volume:
45
Issue:
10
ISSN:
0883-7694
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nearly thirty years after its inception, the field of DNA-programmed colloidal self-assembly has begun to realize its initial promise. In this review, we summarize recent developments in designing effective interactions and understanding the dynamic self-assembly pathways of DNA-coated nanoparticles and microparticles, as well as how these advances have propelled tremendous progress in crystal engineering. We also highlight exciting new directions showing that new classes of subunits combining nanoparticles with DNA origami can be used to engineer novel multicomponent assemblies, including structures with self-limiting, finite sizes. We conclude by providing an outlook on how recent theoretical advances focusing on the kinetics of self-assembly could usher in new materials-design opportunities, like the possibility of retrieving multiple distinct target structures from a single suspension or accessing new classes of materials that are stabilized by energy dissipation, mimicking self-assembly in living systems. 
    more » « less
  2. null (Ed.)
    The structural and functional complexity of multicellular biological systems, such as the brain, are beyond the reach of human design or assembly capabilities. Cells in living organisms may be recruited to construct synthetic materials or structures if treated as anatomically defined compartments for specific chemistry, harnessing biology for the assembly of complex functional structures. By integrating engineered-enzyme targeting and polymer chemistry, we genetically instructed specific living neurons to guide chemical synthesis of electrically functional (conductive or insulating) polymers at the plasma membrane. Electrophysiological and behavioral analyses confirmed that rationally designed, genetically targeted assembly of functional polymers not only preserved neuronal viability but also achieved remodeling of membrane properties and modulated cell type–specific behaviors in freely moving animals. This approach may enable the creation of diverse, complex, and functional structures and materials within living systems. 
    more » « less
  3. Abstract Magnetic assembly at the nanoscale level holds great potential for producing smart materials with high functional and structural diversity. Generally, the chemical, physical, and mechanical properties of the resulting materials can be engineered or dynamically tuned by controlling external magnetic fields. This Review analyzes the recent research progress on nanoscale magnetic assembly approaches toward the development of smart materials. The magnetic interactions between nanoparticles (both magnetic and nonmagnetic) and the interactions between nanoparticles and external magnetic fields are fully expatiated based on numerical simulations. In particular, the advancements of nanoscale magnetic assembly in responsive optical nanostructures, shape‐morphing systems, and advanced materials with tunable surface properties are introduced in three subsections. The key roles of magnetic interactions in nanoscale assembly toward customizable physical and chemical properties are highlighted, with focus on how to enable direct manipulation of the positional and orientational orders of the building blocks and orientational control of soft matrices through the incorporation of anisotropic magnetic structures. 
    more » « less
  4. Gagliardi, Laura (Ed.)
    Colloidal particles with anisotropic geometries and interactions display rich phase behavior and hence have the potential to serve as the basis of functional materials, which can tunably and reversibly self-assemble into different configurations. External fields are one design parameter that can be used to manipulate how systems of colloidal particles assemble with one another. One challenge in designing new materials using anisotropic colloidal particles is understanding how an individual particle’s various anisotropic features, like geometry, affect their overall self-assembly. Here, we present the results of simulation studies that explore the self-assembly of 2D colloidal squares with offset magnetic dipoles in the presence of an external field. Annealing simulations are used to measure the equilibrium-phase behavior of systems of these particles in the ground state, when the magnetic interactions dominate over the thermal forces of the system. We find that the magnetic properties of these systems are strongly influenced by the relative number of squares with opposite “handedness”, or chirality, that are present within the system. Systems of squares that contain equal numbers of either chirality are extremely responsive to the external field; a relatively weak external field is required to magnetize them. In contrast, systems that contain only one chirality of squares are significantly less responsive to the external field; a significantly stronger external field is required to elicit the same magnetic response. Ultimately, the differing macroscopic magnetic properties of these systems are related to their microscopic self- assembly in an external field. Simulation snapshots and ground state phase diagrams illustrate how the absence of opposite chirality squares prevents systems of these particles from leaving an energetically favorable antiparallel configuration in the presence of an external field. When opposite chirality squares are present, these magnetic particles assemble into a head-to-tail configuration, therefore inducing a magnetic state 
    more » « less
  5. Self-assembly is one of the most promising strategies for making functional materials at the nanoscale, yet new design principles for making self-limiting architectures, rather than spatially unlimited periodic lattice structures, are needed. To address this challenge, we explore the tradeoffs between addressable assembly and self-closing assembly of a specific class of self-limiting structures: cylindrical tubules. We make triangular subunits using DNA origami that have specific, valence-limited interactions and designed binding angles, and we study their assembly into tubules that have a self-limited width that is much larger than the size of an individual subunit. In the simplest case, the tubules are assembled from a single component by geometrically programming the dihedral angles between neighboring subunits. We show that the tubules can reach many micrometers in length and that their average width can be prescribed through the dihedral angles. We find that there is a distribution in the width and the chirality of the tubules, which we rationalize by developing a model that considers the finite bending rigidity of the assembled structure as well as the mechanism of self-closure. Finally, we demonstrate that the distributions of tubules can be further sculpted by increasing the number of subunit species, thereby increasing the assembly complexity, and demonstrate that using two subunit species successfully reduces the number of available end states by half. These results help to shed light on the roles of assembly complexity and geometry in self-limited assembly and could be extended to other self-limiting architectures, such as shells, toroids, or triply periodic frameworks. 
    more » « less