We constructed a hybrid system consisting of a 19.6-m mangrove forest and a rubble-mound revetment seaward of a vertical wall. We investigated the mangrove forest and revetment features separately and in combination to compare the mitigating effects of the features on the overtopping of the vertical wall. We considered 3 different forest densities and tested regular, single- and double peaked spectra, and transient (tsunami-like) wave regimes. Water surface elevations and flow velocities were measured along the test section, and overtopping volumes were measured shoreward of the vertical wall. 
                        more » 
                        « less   
                    
                            
                            Prototype-Scale Physical Model Study of Wave Attenuation by an Idealized Mangrove Forest of Moderate Cross-shore Width
                        
                    
    
            This project investigated the potential of mangroves of modest cross-shore thickness to attenuate wave heights and reduce loads on sheltered structures through a prototype-scale physical model. Two forest densities and a baseline case were considered, and transient, regular, and irregular waves generated over the 18 m mangrove test section. Water surface elevations seaward, throughout, and leeward of the mangrove forest were measured, as well as pressures on a test wall positioned behind the forest test section. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1661315
- PAR ID:
- 10309345
- Publisher / Repository:
- Designsafe-CI
- Date Published:
- Subject(s) / Keyword(s):
- Incident and Reflected Wave Analysis LiDAR Cross Sections Physical Model Design and Layout Instrumentation Layout 6: Baseline, Wall Layout 5: Baseline, No Wall Layout 4: Low Density Mangrove Forest, No Wall Layout 3: Low Density Mangrove Forest, Wall Layout 2: High Density Mangrove Forest, Wall Layout 1: High Density Mangrove Forest, No Wall Reports Ohhwrl-Oregon
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In September 2017, Hurricane Irma made landfall in South Florida, causing a great deal of damage to mangrove forests along the southwest coast. A combination of hurricane strength winds and high storm surge across the area resulted in canopy defoliation, broken branches, and downed trees. Evaluating changes in mangrove forest structure is significant, as a loss or change in mangrove forest structure can lead to loss in the ecosystems services that they provide. In this study, we used lidar remote sensing technology and field data to assess damage to the South Florida mangrove forests from Hurricane Irma. Lidar data provided an opportunity to investigate changes in mangrove forests using 3D high-resolution data to assess hurricane-induced changes at different tree structure levels. Using lidar data in conjunction with field observations, we were able to model aboveground necromass (AGN; standing dead trees) on a regional scale across the Shark River and Harney River within Everglades National Park. AGN estimates were higher in the mouth and downstream section of Shark River and higher in the downstream section of the Harney River, with higher impact observed in Shark River. Mean AGN estimates were 46 Mg/ha in Shark River and 38 Mg/ha in Harney River and an average loss of 29% in biomass, showing a significant damage when compared to other areas impacted by Hurricane Irma and previous disturbances in our study region.more » « less
- 
            This project examines mangrove forests as resilient, sustainable, and non-invasive shoreline protection in subtropical and tropical areas. Hydrodynamic data were collected from idealized Rhizophora mangle and Avicennia germinans forest models. The data were analyzed to identify trends between the heterogeneity of a mangrove forest and wave runup extents. Different species of mangroves have a distinctive root system which attributes to different coastal protection abilities. Shorter wave periods were most affected by mangrove configurations tested. Configurations dominated by R. mangle models resulted in overall smaller runup extents compared to configurations dominated by A. germinans models for the same wave conditions.more » « less
- 
            Hybrid approaches to shoreline protection, where natural (“green”) features are combined with hardened (“gray”) infrastructure, are increasingly used to protect coastlines from erosion and flood-based hazards. Our understanding of hybrid systems is limited, and it is unknown whether the components of these systems interact in any meaningful sense to provide flood reduction benefits that are greater or less than “the sum of the parts.” In this study, a large-scale physical model was used to investigate the overtopping of a vertical wall protected by a hybrid system where an idealized Rhizophora mangrove forest of moderate cross-shore width fronted a rubble-mound revetment. Configurations included the wall alone, the wall with a low- or intermediate-density mangrove forest without the revetment, the wall with the revetment, and the wall with an intermediate- or high-density mangrove forest and the revetment. The study isolated the reduction in overtopping of the wall by the revetment component, the mangrove forest component, and the interaction between the components of the hybrid system. The total reduction by the hybrid system was estimated within 5% accuracy as the sum of the reduction by each component minus the product of the component reductions. Comparison of the proportional reduction in overtopping by the mangrove forest on the wall alone and the wall with the revetment indicated that the mangrove forest reduced the overtopping of the revetment by approximately the same proportion that the forest reduced the overtopping of the wall. Therefore, (1) total overtopping reduction by the hybrid system was modeled as the reduction expected from the green and gray components in series. Additional analysis showed that (2) for the same wave conditions, a mangrove forest of moderate cross-shore width can have equal or greater protective benefits than a coastal revetment, (3) there is an exponential relationship between the discharge rate and the forest density, and (4) the mangrove forest, the revetment, and the hybrid system all provided greater reduction in overtopping as wave steepness increased. The tests in this study were conducted without wave breaking, with constant freeboard and water depth, with a specific revetment geometry, and without a mangrove canopy. Therefore, these results should be interpreted with caution if used for engineering design.more » « less
- 
            Klong Thap Lamu, a large mangrove-fringed tidal channel along the northern Andaman Coast of Thailand, provides an ideal location to test the hypothesis that a paleotsunami record can be preserved in the sediments of a mangrove forest. The 2004 Indian Ocean tsunami destroyed local swaths of mangrove forest with highly variable widths — up to 300 m. Left in the wake of the tsunami is a thin mantling of laterally discontinuous sand, macerated shells, and localized coral rubble that is being mixed rapidly into the underlying mangrove peat. Transects across the channel's tsunami-modified shore show that the sand layer thins abruptly at the border of the undisturbed mangroves, suggesting that the energy of the wave dissipated quickly as it entered the forest. The distribution and sedimentology of the 2004 tsunami deposit (Unit tI) suggest that any paleotsunami deposit within this mangrove environment should be spatially restricted and thoroughly bioturbated. Sediment cores collected from within the 2004 tsunami zone penetrate a buried coral-shell peat unit (Unit tIII) that tapers inland. Unit tIII is strikingly similar to Unit tI, except for Unit tIII's diffuse sedimentology, which we attribute to extensive bioturbation. Unit tIII also cross-cuts an identified facies boundary that is traceable across the width of the 2004 tsunami zone. Rather than a facies boundary associated with the regional early-to-late Holocene sea level regression, stratigraphic correlations suggest that Unit tIII represents an event horizon (i.e. tsunami). AMS 14C dates on material from within Unit tIII combined with an upper bracketing age suggest that the tsunami event occurred sometime between 2720 and 4290 cy BP. If correct, this tsunami predates the 3–4 tsunami events recognized to the north at Koh Phra Thong. Unit tIII is, however, a potential far-field equivalent of a recently recognized paleotsunami deposit on the southwestern Indian coast ca. 3,710 years before present (Nair et al., 2010).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
