skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forecasting Action through Contact Representations from First Person Video
Human visual understanding of action is reliant on anticipation of contact as is demonstrated by pioneering work in cognitive science. Taking inspiration from this, we introduce representations and models centered on contact, which we then use in action prediction and anticipation. We annotate a subset of the EPIC Kitchens dataset to include time-to-contact between hands and objects, as well as segmentations of hands and objects. Using these annotations we train the Anticipation Module, a module producing Contact Anticipation Maps and Next Active Object Segmentations - novel low-level representations providing temporal and spatial characteristics of anticipated near future action. On top of the Anticipation Module we apply Egocentric Object Manipulation Graphs (Ego-OMG), a framework for action anticipation and prediction. Ego-OMG models longer-term temporal semantic relations through the use of a graph modeling transitions between contact delineated action states. Use of the Anticipation Module within Ego-OMG produces state-of-the-art results, achieving 1st and 2nd place on the unseen and seen test sets, respectively, of the EPIC Kitchens Action Anticipation Challenge, and achieving state-of-the-art results on the tasks of action anticipation and action prediction over EPIC Kitchens. We perform ablation studies over characteristics of the Anticipation Module to evaluate their utility.  more » « less
Award ID(s):
1824198
PAR ID:
10309504
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN:
0162-8828
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neural rendering is fuelling a unification of learning, 3D geometry and video understanding that has been waiting for more than two decades. Progress, however, is still hampered by a lack of suitable datasets and benchmarks. To address this gap, we introduce EPIC Fields, an augmentation of EPIC-KITCHENS with 3D camera information. Like other datasets for neural rendering, EPIC Fields removes the complex and expensive step of reconstructing cameras using photogrammetry, and allows researchers to focus on modelling problems. We illustrate the challenge of photogrammetry in egocentric videos of dynamic actions and propose innovations to address them. Compared to other neural rendering datasets, EPIC Fields is better tailored to video understanding because it is paired with labelled action segments and the recent VISOR segment annotations. To further motivate the community, we also evaluate three benchmark tasks in neural rendering and segmenting dynamic objects, with strong baselines that showcase what is not possible today. We also highlight the advantage of geometry in semi-supervised video object segmentations on the VISOR annotations. EPIC Fields reconstructs 96% of videos in EPICKITCHENS, registering 19M frames in 99 hours recorded in 45 kitchens, and is available from: http://epic-kitchens.github.io/epic-fields 
    more » « less
  2. In this paper we learn to segment hands and hand-held objects from motion. Our system takes a single RGB image and hand location as input to segment the hand and hand-held object. For learning, we generate responsibility maps that show how well a hand’s motion explains other pixels’ motion in video. We use these responsibility maps as pseudo-labels to train a weakly-supervised neural network using an attention-based similarity loss and contrastive loss. Our system outperforms alternate methods, achieving good performance on the 100DOH, EPIC-KITCHENS, and HO3D datasets. 
    more » « less
  3. Motivated by Goldman's Theory of Human Action - a framework in which action decomposes into 1) base physical movements, and 2) the context in which they occur - we propose a novel learning formulation for motion and context, where context is derived as the complement to motion. More specifically, we model physical movement through the adoption of Therbligs, a set of elemental physical motions centered around object manipulation. Context is modeled through the use of a contrastive mutual information loss that formulates context information as the action information not contained within movement information. We empirically prove the utility brought by this separation of representation, showing sizable improvements in action recognition and action anticipation accuracies for a variety of models. We present results over two object manipulation datasets: EPIC Kitchens 100, and 50 Salads. 
    more » « less
  4. Interactive object understanding, or what we can do to objects and how is a long-standing goal of computer vision. In this paper, we tackle this problem through observation of human hands in in-the-wild egocentric videos. We demonstrate that observation of what human hands interact with and how can provide both the relevant data and the necessary supervision. Attending to hands, readily localizes and stabilizes active objects for learning and reveals places where interactions with objects occur. Analyzing the hands shows what we can do to objects and how. We apply these basic principles on the EPIC-KITCHENS dataset, and successfully learn state-sensitive features, and object affordances (regions of interaction and afforded grasps), purely by observing hands in egocentric videos. 
    more » « less
  5. Leonardis, Aleš; Ricci, Elisa; Roth, Stefan; Russakovsky, Olga; Sattler, Torsten; Varol, Gül (Ed.)
    Learning to infer labels in an open world, i.e., in an environment where the target “labels” are unknown, is an important characteristic for achieving autonomy. Foundation models, pre-trained on enormous amounts of data, have shown remarkable generalization skills through prompting, particularly in zero-shot inference. However, their performance is restricted to the correctness of the target label’s search space, i.e., candidate labels provided in the prompt. This target search space can be unknown or exceptionally large in an open world, severely restricting their performance. To tackle this challenging problem, we propose a two-step, neuro-symbolic framework called ALGO - Action Learning with Grounded Object recognition that uses symbolic knowledge stored in large-scale knowledge bases to infer activities in egocentric videos with limited supervision. First, we propose a neuro-symbolic prompting approach that uses object-centric vision-language models as a noisy oracle to ground objects in the video through evidence-based reasoning. Second, driven by prior commonsense knowledge, we discover plausible activities through an energy-based symbolic pattern theory framework and learn to ground knowledge-based action (verb) concepts in the video. Extensive experiments on four publicly available datasets (EPIC-Kitchens, GTEA Gaze, GTEA Gaze Plus, and Charades-Ego) demonstrate its performance on open-world activity inference. ALGO can be extended to zero-shot inference and demonstrate its competitive performance. 
    more » « less