skip to main content


Title: Compact Stereo Waveguide Display Based on a Unidirectional Polarization-Multiplexed Metagrating In-Coupler
Three-dimensional (3D) vision in augmented reality (AR) displays can enable highly immersive and realistic viewer experience, hence, attracts much attention. Most current approaches create 3D vision by projecting stereoscopic images to different eyes using two separate projection systems, which are inevitably bulky for wearable devices. Here, we propose a compact stereo waveguide AR display system using a single piece of thin flat glass integrated with a polarization-multiplexed metagrating in-coupler and two diffractive grating out-couplers. Incident light of opposite circular polarization states carrying stereoscopic images are first steered by the metagrating in-coupler to opposite propagation directions in the flat glass waveguide, subsequently extracted by the diffractive grating out-couplers, and finally received by different eyes, forming 3D stereo vision. Experimentally, we fabricated a display prototype and demonstrated independent projection of two polarization-multiplexed stereoscopic images.  more » « less
Award ID(s):
1635636
PAR ID:
10309690
Author(s) / Creator(s):
Date Published:
Journal Name:
ACS photonics
Volume:
8
Issue:
4
ISSN:
2330-4022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, augmented reality (AR) displays have attracted considerable attention due to the highly immersive and realistic viewer experience they can provide. One key challenge of AR displays is the fundamental trade-off between the extent of the field-of-view (FOV) and the size of the eyebox, set by the conservation of etendue sets this trade-off. Exit-pupil expansion (EPE) is one possible solution to this problem. However, it comes at the cost of distributing light over a larger area, decreasing the overall system's brightness. In this work, we show that the geometry of the waveguide and the in-coupler sets a fundamental limit on how efficient the combiner can be for a given FOV. This limit can be used as a tool for waveguide designers to benchmark the in-coupling efficiency of their in-coupler gratings. We design a metasurface-based grating (metagrating) and a commonly used SRG as in-couplers using the derived limit to guide optimization. We then compare the diffractive efficiencies of the two types of in-couplers to the theoretical efficiency limit. For our chosen waveguide geometry, the metagrating's 28% efficiency surpasses the SRG's 20% efficiency and nearly matches the geometry-based limit of 29% due to the superior angular response control of metasurfaces compared to SRGs. This work provides new insight into the efficiency limit of waveguide-based combiners and paves a novel path toward implementing metasurfaces in efficient waveguide AR displays.

     
    more » « less
  2. Kress, Bernard C ; Peroz, Christophe (Ed.)
    The creation of new see-through near-eye displays (NEDs) architectures is a topic of intense research focus. A fundamental problem that each design must address is the field of view (FOV) and eyebox of NEDs are limited by etendue conservation for a fixed display optics size. Waveguide architecture provides the solution to increasing the eyebox in NEDs without increasing the optics size through exit pupil expansion. Brightness and uniformity are two key features of waveguide architecture. In this work, we focus on the brightness of the waveguide since the image uniformity can be compensated by the display engine. We show that the geometry of the waveguide sets a fundamental limit on the in-coupling efficiency for a given FOV. This limit can be used as a tool for waveguide designers to benchmark the in-coupling efficiency of their incoupler gratings. With this derived limit, we designed and optimized a metasurface-based grating (metagrating) and a surface relief grating (SRG) as in-couplers. The diffractive efficiencies of the two types of in-couplers were then compared to the theoretical efficiency limit. The metagrating's 28% efficiency surpasses the SRG's 20% efficiency and nearly matches the geometry-based limit of 29% due to the superior angular response control of metasurfaces compared to SRGs. This work provides a new understanding of the brightness efficiency limit of waveguide-based combiners and paves a novel path toward implementing metasurfaces in efficient waveguide AR displays. 
    more » « less
  3. Near-eye display systems for augmented reality (AR) aim to seamlessly merge virtual content with the user’s view of the real-world. A substantial limitation of current systems is that they only present virtual content over a limited portion of the user’s natural field of view (FOV). This limitation reduces the immersion and utility of these systems. Thus, it is essential to quantify FOV coverage in AR systems and understand how to maximize it. It is straightforward to determine the FOV coverage for monocular AR systems based on the system architecture. However, stereoscopic AR systems that present 3D virtual content create a more complicated scenario because the two eyes’ views do not always completely overlap. The introduction of partial binocular overlap in stereoscopic systems can potentially expand the perceived horizontal FOV coverage, but it can also introduce perceptual nonuniformity artifacts. In this arrticle, we first review the principles of binocular FOV overlap for natural vision and for stereoscopic display systems. We report the results of a set of perceptual studies that examine how different amounts and types of horizontal binocular overlap in stereoscopic AR systems influence the perception of nonuniformity across the FOV. We then describe how to quantify the horizontal FOV in stereoscopic AR when taking 3D content into account. We show that all stereoscopic AR systems result in a variable horizontal FOV coverage and variable amounts of binocular overlap depending on fixation distance. Taken together, these results provide a framework for optimizing perceived FOV coverage and minimizing perceptual artifacts in stereoscopic AR systems for different use cases. 
    more » « less
  4. Grating coupler devices provide efficient, foundry-compatible vertical fiber-to-chip coupling solutions in integrated photonic platforms. However, standard grating coupler designs are highly polarization sensitive, which hinders their adoption. We present a new, to the best of our knowledge, type of 1D polarization-insensitive grating coupler (PIGC) that is based on a zero-birefringence subwavelength “corelet” waveguide. We demonstrate a PIGC for coupling in the telecommunications O-band in a 45-nm-node monolithic silicon-on-insulator (SOI) CMOS electronic-photonic platform, with measured insertion losses of 6.7 and 6.1 dB to transverse electric and transverse magnetic polarizations, respectively, and a ±1-dB polarization dependent loss bandwidth of 73 nm.

     
    more » « less
  5. In this paper, a type of transparent colored static display consisting of a flat glass waveguide and embedded multi-layer gratings is presented, by which multiple patterns and colors with a wide field of view (FOV) can be displayed. The embedded grating is achieved by nanoimprinting followed by deposition of a high refractive index dielectric layer. The process can be repeated to produce multi-layer gratings, which are shaped into specific patterns to be displayed, and they are designed to have proper periods and orientations to independently extract light incident from different edges of the glass plate. Such transparent display offers the advantages of low cost, easy fabrication and wide FOV, and it is suitable for colored signage and decorative applications 
    more » « less