We consider the problem of a single seller repeatedly selling a single item to a single buyer (specifically, the buyer has a value drawn fresh from known distribution $D$ in every round). Prior work assumes that the buyer is fully rational and will perfectly reason about how their bids today affect the seller's decisions tomorrow. In this work we initiate a different direction: the buyer simply runs a no-regret learning algorithm over possible bids. We provide a fairly complete characterization of optimal auctions for the seller in this domain. Specifically:
1) If the buyer bids according to EXP3 (or any ``mean-based'' learning algorithm), then the seller can extract expected revenue arbitrarily close to the expected welfare. This auction is independent of the buyer's valuation $D$, but somewhat unnatural as it is sometimes in the buyer's interest to overbid.
2) There exists a learning algorithm $\mathcal{A}$ such that if the buyer bids according to $\mathcal{A}$ then the optimal strategy for the seller is simply to post the Myerson reserve for $D$ every round.
3) If the buyer bids according to EXP3 (or any ``mean-based'' learning algorithm), but the seller is restricted to ``natural'' auction formats where overbidding is dominated (e.g. Generalized First-Price or Generalized Second-Price), then the optimal strategy for the seller is a pay-your-bid format with decreasing reserves over time. Moreover, the seller's optimal achievable revenue is characterized by a linear program, and can be unboundedly better than the best truthful auction yet simultaneously unboundedly worse than the expected welfare.
more »
« less
Incentive-Compatible Learning of Reserve Prices for Repeated Auctions
Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus.
more »
« less
- Award ID(s):
- 1653477
- PAR ID:
- 10309699
- Date Published:
- Journal Name:
- Operations Research
- Volume:
- 69
- Issue:
- 2
- ISSN:
- 0030-364X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We identify the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. This is one instance of a more general framework for designing two-part tariff auctions, adapting the duality framework of Cai et al [CDW16]. Given a (not necessarily incentive compatible) auction format A satisfying certain technical conditions, our framework augments the auction with a personalized entry fee for each bidder, which must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. If all-pay auctions are used, we prove that the resulting mechanism is credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. If second-price auctions are used, we obtain a truthful O(1)-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments; an open question in the literature [RST17].more » « less
-
We study stationary equilibria in a sequential auction setting. A seller runs a sequence of standard first-price or second-price auctions to sell an indivisible object to potential buyers. The seller can commit to the rule of the auction and the reserve price of the current period but not to reserve prices of future periods. We prove the existence of stationary equilibria and establish a uniform Coase conjecture—at any point in time and in any stationary equilibrium, the seller’s profit from running sequential auctions converges to the profit of running an efficient auction as the period length goes to zero.more » « less
-
Most results in revenue-maximizing mechanism design hinge on “getting the price right”—selling goods to bidders at prices low enough to encourage a sale but high enough to garner nontrivial revenue. This approach is difficult to implement when the seller has little or no a priori information about bidder valuations or when the setting is sufficiently complex, such as matching markets with heterogeneous goods. In this paper, we apply a robust approach to designing auctions for revenue. Instead of relying on prior knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competition for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations of this idea: first, we enhance competition in the market by increasing demand (or alternatively, by limiting supply), and second, we run a standard second price (Vickrey) auction. In their renowned work from 1996 , Bulow and Klemperer [Bulow J, Klemperer P (1996) Auctions vs. negotiations. Amer. Econom. Rev. 86(1):180–194.] apply this method to markets with single goods. As our main result, we give the first application beyond single-parameter settings, proving that, simultaneously for many valuation distributions, this method achieves expected revenue at least as good as the optimal revenue in the original market. Our robust and simple approach provides a handle on the elusive optimal revenue in multiitem matching markets and shows when the use of welfare-maximizing Vickrey auctions is justified, even if revenue is a priority. By establishing quantitative tradeoffs, our work provides guidelines for a seller in choosing among two different revenue-extracting strategies: sophisticated pricing based on market research or advertising to draw additional bidders.more » « less
-
null (Ed.)We study the role of limited commitment in a standard auction environment. In each period, the seller can commit to an auction with a reserve price but not to future reserve prices. We characterize the set of equilibrium profits attainable for the seller as the period length vanishes. An immediate sale by efficient auction is optimal when there are at least three buyers. For many natural distributions two buyers is enough. Otherwise, we give conditions under which the maximal profit is attained through continuously declining reserve prices. (JEL D44, D82)more » « less