We discuss the Onsager theory of wall-bounded turbulence, analysing the momentum dissipation anomaly hypothesized by Taylor. Turbulent drag laws observed with both smooth and rough walls imply ultraviolet divergences of velocity gradients. These are eliminated by a coarse-graining operation, filtering out small-scale eddies and windowing out near-wall eddies, thus introducing two arbitrary regularization length-scales. The regularized equations for resolved eddies correspond to the weak formulation of the Navier–Stokes equation and contain, in addition to the usual turbulent stress, also an inertial drag force modelling momentum exchange with unresolved near-wall eddies. Using an Onsager-type argument based on the principle of renormalization group invariance, we derive an upper bound on wall friction by a function of Reynolds number determined by the modulus of continuity of the velocity at the wall. Our main result is a deterministic version of Prandtl’s relation between the Blasius − 1 / 4 drag law and the 1/7 power-law profile of the mean streamwise velocity. At higher Reynolds, the von Kármán–Prandtl drag law requires instead a slow logarithmic approach of velocity to zero at the wall. We discuss briefly also the large-eddy simulation of wall-bounded flows and use of iterative renormalization group methods to establish universal statistics in the inertial sublayer. This article is part of the theme issue ‘Scaling the turbulence edifice (part 1)’.
more »
« less
Resolvent-based predictions for turbulent flow over anisotropic permeable substrates
Recent simulations indicate that streamwise-preferential porous materials have the potential to reduce drag in wall-bounded turbulent flows (Gómez-de-Segura & García-Mayoral, J. Fluid Mech. , vol. 875, 2019, pp. 124–172). This paper extends the resolvent formulation to study the effect of such anisotropic permeable substrates on turbulent channel flow. Under the resolvent formulation, the Fourier-transformed Navier–Stokes equations are interpreted as a linear forcing–response system. The nonlinear terms are considered the endogenous forcing in the system that gives rise to a velocity and pressure response. A gain-based decomposition of the forcing–response transfer function – the resolvent operator – identifies response modes (resolvent modes) that are known to reproduce important structural and statistical features of wall-bounded turbulent flows. The effect of permeable substrates is introduced in this framework using the volume-averaged Navier–Stokes equations and a generalized form of Darcy's law. Substrates with high streamwise permeability and low spanwise permeability are found to suppress the forcing–response gain for the resolvent mode that serves as a surrogate for the energetic near-wall cycle. This reduction in mode gain is shown to be consistent with the drag reduction trends predicted by theory and observed in numerical simulations. Simulation results indicate that drag reduction is limited by the emergence of spanwise rollers resembling Kelvin–Helmholtz vortices beyond a threshold value of wall-normal permeability. The resolvent framework also predicts the conditions in which such energetic spanwise-coherent rollers emerge. These findings suggest that a limited set of resolvent modes can serve as the building blocks for computationally efficient models that enable the design and optimization of permeable substrates for passive turbulence control.
more »
« less
- Award ID(s):
- 1943105
- PAR ID:
- 10309747
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 913
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
AbstractPrevious theoretical and simulation results indicate that anisotropic porous materials have the potential to reduce turbulent skin friction in wall-bounded flows. This study experimentally investigates the influence of anisotropy on the drag response of porous substrates. A family of anisotropic periodic lattices was manufactured using 3D printing. Rod spacing in different directions was varied systematically to achieve different ratios of streamwise, wall-normal, and spanwise bulk permeabilities ($$\kappa _{xx}$$ ,$$\kappa _{yy}$$ , and$$\kappa _{zz}$$ ). The 3D printed materials were flush-mounted in a benchtop water channel. Pressure drop measurements were taken in the fully developed region of the flow to systematically characterize drag for materials with anisotropy ratios$$\frac{\kappa _{xx}}{\kappa _{yy}} \in [0.035,28.6]$$ . Results show that all materials lead to an increase in drag compared to the reference smooth wall case over the range of bulk Reynolds numbers tested ($$\hbox {Re}_b \in [500,4000]$$ ). However, the relative increase in drag is lower for streamwise-preferential materials. We estimate that the wall-normal permeability for all tested cases exceeded the threshold identified in previous literature ($$\sqrt{\kappa _{yy}}^+> 0.4$$ ) for the emergence of energetic spanwise rollers similar to Kelvin–Helmholtz vortices, which can increase drag. The results also indicate that porous walls exhibit a departure from laminar behavior at different values for bulk Reynolds numbers depending on the geometry. Graphical abstractmore » « less
-
This paper employs an input–output based approach to analyse the convective velocities and transport of fluctuations in turbulent channel flows. The convective velocity for a fluctuating quantity associated with streamwise–spanwise wavelength pairs at each wall-normal location is obtained through the maximization of the power spectral density associated with the linearized Navier–Stokes equations with a turbulent mean profile and delta-correlated Gaussian forcing. We first demonstrate that the mean convective velocities computed in this manner agree well with those reported previously in the literature. We then exploit the analytical framework to probe the underlying mechanisms contributing to the local convective velocity at different wall-normal locations by isolating the contributions of each streamwise–spanwise wavelength pair (flow scale). The resulting analysis suggests that the behaviour of the convective velocity in the near-wall region is influenced by large-scale structures further away from the wall. These structures resemble Townsend’s attached eddies in the cross-plane, yet show incomplete similarity in the streamwise direction. We then investigate the role of each linear term in the momentum equation to isolate the contribution of the pressure, mean shear, and viscous effects to the deviation of the convective velocity from the mean at each flow scale. Our analysis highlights the role of the viscous effects, particularly in regards to large channel spanning structures whose influence extends to the near-wall region. The results of this work suggest the promise of an input–output approach for analysing convective velocity across a range of flow scales using only the mean velocity profile.more » « less
-
Resolvent analysis provides a framework to predict coherent spatio-temporal structures of the largest linear energy amplification, through a singular value decomposition (SVD) of the resolvent operator, obtained by linearising the Navier–Stokes equations about a known turbulent mean velocity profile. Resolvent analysis utilizes a Fourier decomposition in time, which has thus far limited its application to statistically stationary or time-periodic flows. This work develops a variant of resolvent analysis applicable to time-evolving flows, and proposes a variant that identifies spatio-temporally sparse structures, applicable to either stationary or time-varying mean velocity profiles. Spatio-temporal resolvent analysis is formulated through the incorporation of the temporal dimension to the numerical domain via a discrete time-differentiation operator. Sparsity (which manifests in localisation) is achieved through the addition of an $$l_1$$-norm penalisation term to the optimisation associated with the SVD. This modified optimisation problem can be formulated as a nonlinear eigenproblem and solved via an inverse power method. We first showcase the implementation of the sparse analysis on a statistically stationary turbulent channel flow, and demonstrate that the sparse variant can identify aspects of the physics not directly evident from standard resolvent analysis. This is followed by applying the sparse space–time formulation on systems that are time varying: a time-periodic turbulent Stokes boundary layer and then a turbulent channel flow with a sudden imposition of a lateral pressure gradient, with the original streamwise pressure gradient unchanged. We present results demonstrating how the sparsity-promoting variant can either change the quantitative structure of the leading space–time modes to increase their sparsity, or identify entirely different linear amplification mechanisms compared with non-sparse resolvent analysis.more » « less
-
Drag for wall-bounded flows is directly related to the spatial flux of spanwise vorticity outward from the wall. In turbulent flows a key contribution to this wall-normal flux arises from nonlinear advection and stretching of vorticity, interpretable as a cascade. We study this process using numerical simulation data of turbulent channel flow at friction Reynolds number$$Re_\tau =1000$$. The net transfer from the wall of spanwise vorticity created by downstream pressure drop is due to two large opposing fluxes, one which is ‘down-gradient’ or outward from the wall, where most vorticity concentrates, and the other which is ‘up-gradient’ or toward the wall and acting against strong viscous diffusion in the near-wall region. We present evidence that the up-gradient/down-gradient transport occurs by a mechanism of correlated inflow/outflow and spanwise vortex stretching/contraction that was proposed by Lighthill. This mechanism is essentially Lagrangian, but we explicate its relation to the Eulerian anti-symmetric vorticity flux tensor. As evidence for the mechanism, we study (i) statistical correlations of the wall-normal velocity and of wall-normal flux of spanwise vorticity, (ii) vorticity flux cospectra identifying eddies involved in nonlinear vorticity transport in the two opposing directions and (iii) visualizations of coherent vortex structures which contribute to the transport. The ‘D-type’ vortices contributing to down-gradient transport in the log layer are found to be attached, hairpin-type vortices. However, the ‘U-type’ vortices contributing to up-gradient transport are detached, wall-parallel, pancake-shaped vortices with strong spanwise vorticity, as expected by Lighthill's mechanism. We discuss modifications to the attached eddy model and implications for turbulent drag reduction.more » « less
An official website of the United States government

