Not all the information in a turbulent field is relevant for understanding particular regions or variables in the flow. Here, we present a method for decomposing a source field into its informative$$\boldsymbol {\varPhi }_{I}(\boldsymbol {x},t)$$and residual$$\boldsymbol {\varPhi }_{R}(\boldsymbol {x},t)$$components relative to another target field. The method is referred to as informative and non-informative decomposition (IND). All the necessary information for physical understanding, reduced-order modelling and control of the target variable is contained in$$\boldsymbol {\varPhi }_{I}(\boldsymbol {x},t)$$, whereas$$\boldsymbol {\varPhi }_{R}(\boldsymbol {x},t)$$offers no substantial utility in these contexts. The decomposition is formulated as an optimisation problem that seeks to maximise the time-lagged mutual information of the informative component with the target variable while minimising the mutual information with the residual component. The method is applied to extract the informative and residual components of the velocity field in a turbulent channel flow, using the wall shear stress as the target variable. We demonstrate the utility of IND in three scenarios: (i) physical insight into the effect of the velocity fluctuations on the wall shear stress; (ii) prediction of the wall shear stress using velocities far from the wall; and (iii) development of control strategies for drag reduction in a turbulent channel flow using opposition control. In case (i), IND reveals that the informative velocity related to wall shear stress consists of wall-attached high- and low-velocity streaks, collocated with regions of vertical motions and weak spanwise velocity. This informative structure is embedded within a larger-scale streak–roll structure of residual velocity, which bears no information about the wall shear stress. In case (ii), the best-performing model for predicting wall shear stress is a convolutional neural network that uses the informative component of the velocity as input, while the residual velocity component provides no predictive capabilities. Finally, in case (iii), we demonstrate that the informative component of the wall-normal velocity is closely linked to the observability of the target variable and holds the essential information needed to develop successful control strategies.
more »
« less
This content will become publicly available on November 25, 2025
Sparse space–time resolvent analysis for statistically stationary and time-varying flows
Resolvent analysis provides a framework to predict coherent spatio-temporal structures of the largest linear energy amplification, through a singular value decomposition (SVD) of the resolvent operator, obtained by linearising the Navier–Stokes equations about a known turbulent mean velocity profile. Resolvent analysis utilizes a Fourier decomposition in time, which has thus far limited its application to statistically stationary or time-periodic flows. This work develops a variant of resolvent analysis applicable to time-evolving flows, and proposes a variant that identifies spatio-temporally sparse structures, applicable to either stationary or time-varying mean velocity profiles. Spatio-temporal resolvent analysis is formulated through the incorporation of the temporal dimension to the numerical domain via a discrete time-differentiation operator. Sparsity (which manifests in localisation) is achieved through the addition of an $$l_1$$-norm penalisation term to the optimisation associated with the SVD. This modified optimisation problem can be formulated as a nonlinear eigenproblem and solved via an inverse power method. We first showcase the implementation of the sparse analysis on a statistically stationary turbulent channel flow, and demonstrate that the sparse variant can identify aspects of the physics not directly evident from standard resolvent analysis. This is followed by applying the sparse space–time formulation on systems that are time varying: a time-periodic turbulent Stokes boundary layer and then a turbulent channel flow with a sudden imposition of a lateral pressure gradient, with the original streamwise pressure gradient unchanged. We present results demonstrating how the sparsity-promoting variant can either change the quantitative structure of the leading space–time modes to increase their sparsity, or identify entirely different linear amplification mechanisms compared with non-sparse resolvent analysis.
more »
« less
- Award ID(s):
- 2238770
- PAR ID:
- 10557734
- Publisher / Repository:
- Journal of Fluid Mechanics
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 999
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In many real-world applications of monitoring multivariate spatio-temporal data that are non-stationary over time, one is often interested in detecting hot-spots with spatial sparsity and temporal consistency, instead of detecting system-wise changes as in traditional statistical process control (SPC) literature. In this paper, we propose an efficient method to detect hot-spots through tensor decomposition, and our method has three steps. First, we fit the observed data into a Smooth Sparse Decomposition Tensor (SSD-Tensor) model that serves as a dimension reduction and de-noising technique: it is an additive model decomposing the original data into: smooth but non-stationary global mean, sparse local anomalies, and random noises. Next, we estimate model parameters by the penalized framework that includes Least Absolute Shrinkage and Selection Operator (LASSO) and fused LASSO penalty. An efficient recursive optimization algorithm is developed based on Fast Iterative Shrinkage Thresholding Algorithm (FISTA). Finally, we apply a Cumulative Sum (CUSUM) Control Chart to monitor model residuals after removing global means, which helps to detect when and where hot-spots occur. To demonstrate the usefulness of our proposed SSD-Tensor method, we compare it with several other methods including scan statistics, LASSO-based, PCA-based, T2-based control chart in extensive numerical simulation studies and a real crime rate dataset.more » « less
-
Abstract This paper presents an in-depth analysis of a parametrized version of the resolvent composition, an operation that combines a set-valued operator and a linear operator. We provide new properties and examples, and show that resolvent compositions can be interpreted as parallel compositions of perturbed operators. Additionally, we establish new monotonicity results, even in cases when the initial operator is not monotone. Finally, we derive asymptotic results regarding operator convergence, specifically focusing on graph-convergence and the$$\rho $$ -Hausdorff distance.more » « less
-
Abstract We study the$$L^p$$regularity of the Bergman projectionPover the symmetrized polydisc in$$\mathbb C^n$$. We give a decomposition of the Bergman projection on the polydisc and obtain an operator equivalent to the Bergman projection over antisymmetric function spaces. Using it, we obtain the$$L^p$$irregularity ofPfor$$p=\frac {2n}{n-1}$$which also implies thatPis$$L^p$$bounded if and only if$$p\in (\frac {2n}{n+1},\frac {2n}{n-1})$$.more » « less
-
Recent simulations indicate that streamwise-preferential porous materials have the potential to reduce drag in wall-bounded turbulent flows (Gómez-de-Segura & García-Mayoral, J. Fluid Mech. , vol. 875, 2019, pp. 124–172). This paper extends the resolvent formulation to study the effect of such anisotropic permeable substrates on turbulent channel flow. Under the resolvent formulation, the Fourier-transformed Navier–Stokes equations are interpreted as a linear forcing–response system. The nonlinear terms are considered the endogenous forcing in the system that gives rise to a velocity and pressure response. A gain-based decomposition of the forcing–response transfer function – the resolvent operator – identifies response modes (resolvent modes) that are known to reproduce important structural and statistical features of wall-bounded turbulent flows. The effect of permeable substrates is introduced in this framework using the volume-averaged Navier–Stokes equations and a generalized form of Darcy's law. Substrates with high streamwise permeability and low spanwise permeability are found to suppress the forcing–response gain for the resolvent mode that serves as a surrogate for the energetic near-wall cycle. This reduction in mode gain is shown to be consistent with the drag reduction trends predicted by theory and observed in numerical simulations. Simulation results indicate that drag reduction is limited by the emergence of spanwise rollers resembling Kelvin–Helmholtz vortices beyond a threshold value of wall-normal permeability. The resolvent framework also predicts the conditions in which such energetic spanwise-coherent rollers emerge. These findings suggest that a limited set of resolvent modes can serve as the building blocks for computationally efficient models that enable the design and optimization of permeable substrates for passive turbulence control.more » « less
An official website of the United States government
