skip to main content


Title: 0-MMS: Zero-Shot Multi-Motion Segmentation With A Monocular Event Camera
Segmentation of moving objects in dynamic scenes is a key process in scene understanding for navigation tasks. Classical cameras suffer from motion blur in such scenarios rendering them effete. On the contrary, event cameras, because of their high temporal resolution and lack of motion blur, are tailor-made for this problem. We present an approach for monocular multi-motion segmentation, which combines bottom-up feature tracking and top-down motion compensation into a unified pipeline, which is the first of its kind to our knowledge. Using the events within a time-interval, our method segments the scene into multiple motions by splitting and merging. We further speed up our method by using the concept of motion propagation and cluster keyslices.The approach was successfully evaluated on both challenging real-world and synthetic scenarios from the EV-IMO, EED, and MOD datasets and outperformed the state-of-the-art detection rate by 12%, achieving a new state-of-the-art average detection rate of 81.06%, 94.2% and 82.35% on the aforementioned datasets. To enable further research and systematic evaluation of multi-motion segmentation, we present and open-source a new dataset/benchmark called MOD++, which includes challenging sequences and extensive data stratification in-terms of camera and object motion, velocity magnitudes, direction, and rotational speeds.  more » « less
Award ID(s):
2020624
NSF-PAR ID:
10309882
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Robotics and Automation (ICRA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Single-photon sensitive image sensors have recently gained popularity in passive imaging applications where the goal is to capture photon flux (brightness) values of different scene points in the presence of challenging lighting conditions and scene motion. Recent work has shown that high-speed bursts of single-photon timestamp information captured using a single-photon avalanche diode camera can be used to estimate and correct for scene motion thereby improving signal-to-noise ratio and reducing motion blur artifacts. We perform a comparison of various design choices in the processing pipeline used for noise reduction, motion compensation, and upsampling of single-photon timestamp frames. We consider various pixelwise noise reduction techniques in combination with state-of-the-art deep neural network upscaling algorithms to super-resolve intensity images formed with single-photon timestamp data. We explore the trade space of motion blur and signal noise in various scenes with different motion content. Using real data captured with a hardware prototype, we achieved superresolution reconstruction at frame rates up to 65.8 kHz (native sampling rate of the sensor) and captured videos of fast-moving objects. The best reconstruction is obtained with the motion compensation approach, which achieves a structural similarity (SSIM) of about 0.67 for fast moving rigid objects. We are able to reconstruct subpixel resolution. These results show the relative superiority of our motion compensation compared to other approaches that do not exceed an SSIM of 0.5. 
    more » « less
  2. We present a new approach, EgoGlass, towards egocentric motion-capture and human pose estimation. EgoGlass is a lightweight eyeglass frame with two cameras mounted on it. Our first contribution is a new egocentric motion-capture device that adds next to no extra burden on the user and a dataset of real people doing a diverse set of actions captured by EgoGlass. Second, we propose to utilize body part information for human pose detection - to help tackle the problems of limited body coverage and self-occlusions caused by the egocentric viewpoint and cameras’ proximity to the human body. We also propose a concept of pseudo-limb mask as an alternative for segmentation mask when ground truth segmentation mask is absent for egocentric images with real subject. We demonstrate that our method achieves better results than the counterpart method without body part information on our dataset. We also test our method on two existing egocentric datasets: xR-EgoPose and EgoCap. Our method achieves state-of-the-art results on xR-EgoPose and is on par with existing method for EgoCap without requiring temporal information or personalization for each individual user. 
    more » « less
  3. Event-based cameras have been designed for scene motion perception - their high temporal resolution and spatial data sparsity converts the scene into a volume of boundary trajectories and allows to track and analyze the evolution of the scene in time. Analyzing this data is computationally expensive, and there is substantial lack of theory on dense-in-time object motion to guide the development of new algorithms; hence, many works resort to a simple solution of discretizing the event stream and converting it to classical pixel maps, which allows for application of conventional image processing methods. In this work we present a Graph Convolutional neural network for the task of scene motion segmentation by a moving camera. We convert the event stream into a 3D graph in (x,y,t) space and keep per-event temporal information. The difficulty of the task stems from the fact that unlike in metric space, the shape of an object in (x,y,t) space depends on its motion and is not the same across the dataset. We discuss properties of of the event data with respect to this 3D recognition problem, and show that our Graph Convolutional architecture is superior to PointNet++. We evaluate our method on the state of the art event-based motion segmentation dataset - EV-IMO and perform comparisons to a frame-based method proposed by its authors. Our ablation studies show that increasing the event slice width improves the accuracy, and how subsampling and edge configurations affect the network performance. 
    more » « less
  4. Network pruning is a widely used technique to reduce computation cost and model size for deep neural networks. However, the typical three-stage pipeline (i.e., training, pruning, and retraining (fine-tuning)) significantly increases the overall training time. In this article, we develop a systematic weight-pruning optimization approach based on surrogate Lagrangian relaxation (SLR), which is tailored to overcome difficulties caused by the discrete nature of the weight-pruning problem. We further prove that our method ensures fast convergence of the model compression problem, and the convergence of the SLR is accelerated by using quadratic penalties. Model parameters obtained by SLR during the training phase are much closer to their optimal values as compared to those obtained by other state-of-the-art methods. We evaluate our method on image classification tasks using CIFAR-10 and ImageNet with state-of-the-art multi-layer perceptron based networks such as MLP-Mixer; attention-based networks such as Swin Transformer; and convolutional neural network based models such as VGG-16, ResNet-18, ResNet-50, ResNet-110, and MobileNetV2. We also evaluate object detection and segmentation tasks on COCO, the KITTI benchmark, and the TuSimple lane detection dataset using a variety of models. Experimental results demonstrate that our SLR-based weight-pruning optimization approach achieves a higher compression rate than state-of-the-art methods under the same accuracy requirement and also can achieve higher accuracy under the same compression rate requirement. Under classification tasks, our SLR approach converges to the desired accuracy × faster on both of the datasets. Under object detection and segmentation tasks, SLR also converges 2× faster to the desired accuracy. Further, our SLR achieves high model accuracy even at the hardpruning stage without retraining, which reduces the traditional three-stage pruning into a two-stage process. Given a limited budget of retraining epochs, our approach quickly recovers the model’s accuracy.

     
    more » « less
  5. Abstract

    Accurate characterization of microcalcifications (MCs) in 2D digital mammography is a necessary step toward reducing the diagnostic uncertainty associated with the callback of indeterminate MCs. Quantitative analysis of MCs can better identify MCs with a higher likelihood of ductal carcinoma in situ or invasive cancer. However, automated identification and segmentation of MCs remain challenging with high false positive rates. We present a two-stage multiscale approach to MC segmentation in 2D full-field digital mammograms (FFDMs) and diagnostic magnification views. Candidate objects are first delineated using blob detection and Hessian analysis. A regression convolutional network, trained to output a function with a higher response near MCs, chooses the objects which constitute actual MCs. The method was trained and validated on 435 screening and diagnostic FFDMs from two separate datasets. We then used our approach to segment MCs on magnification views of 248 cases with amorphous MCs. We modeled the extracted features using gradient tree boosting to classify each case as benign or malignant. Compared to state-of-the-art comparison methods, our approach achieved superior mean intersection over the union (0.670 ± 0.121 per image versus 0.524 ± 0.034 per image), intersection over the union per MC object (0.607 ± 0.250 versus 0.363 ± 0.278) and true positive rate of 0.744 versus 0.581 at 0.4 false positive detections per square centimeter. Features generated using our approach outperformed the comparison method (0.763 versus 0.710 AUC) in distinguishing amorphous calcifications as benign or malignant.

     
    more » « less