skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Robustly Learning Composable Options in Deep Reinforcement Learning
Hierarchical reinforcement learning (HRL) is only effective for long-horizon problems when high-level skills can be reliably sequentially executed. Unfortunately, learning reliably composable skills is difficult, because all the components of every skill are constantly changing during learning. We propose three methods for improving the composability of learned skills: representing skill initiation regions using a combination of pessimistic and optimistic classifiers; learning re-targetable policies that are robust to non-stationary subgoal regions; and learning robust option policies using model-based RL. We test these improvements on four sparse-reward maze navigation tasks involving a simulated quadrupedal robot. Each method successively improves the robustness of a baseline skill discovery method, substantially outperforming state-of-the-art flat and hierarchical methods.  more » « less
Award ID(s):
1955361 1717569
NSF-PAR ID:
10310145
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 30th International Joint Conference on Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Hierarchical reinforcement learning (HRL) is only effective for long-horizon problems when high-level skills can be reliably sequentially executed. Unfortunately, learning reliably composable skills is difficult, because all the components of every skill are constantly changing during learning. We propose three methods for improving the composability of learned skills: representing skill initiation regions using a combination of pessimistic and optimistic classifiers; learning re-targetable policies that are robust to non-stationary subgoal regions; and learning robust option policies using model-based RL. We test these improvements on four sparse-reward maze navigation tasks involving a simulated quadrupedal robot. Each method successively improves the robustness of a baseline skill discovery method, substantially outperforming state-of-the-art flat and hierarchical methods. 
    more » « less
  2. We introduce a new skill-discovery algorithm that builds a discrete graph representation of large continuous MDPs, where nodes correspond to skill subgoals and the edges to skill policies. The agent constructs this graph during an unsupervised training phase where it interleaves discovering skills and planning using them to gain coverage over ever-increasing portions of the state-space. Given a novel goal at test time, the agent plans with the acquired skill graph to reach a nearby state, then switches to learning to reach the goal. We show that the resulting algorithm, Deep Skill Graphs, outperforms both flat and existing hierarchical reinforcement learning methods on four difficult continuous control tasks. 
    more » « less
  3. null (Ed.)
    We introduce a new skill-discovery algorithm that builds a discrete graph representation of large continuous MDPs, where nodes correspond to skill subgoals and the edges to skill policies. The agent constructs this graph during an unsupervised training phase where it interleaves discovering skills and planning using them to gain coverage over ever-increasing portions of the state-space. Given a novel goal at test time, the agent plans with the acquired skill graph to reach a nearby state, then switches to learning to reach the goal. We show that the resulting algorithm, Deep Skill Graphs, outperforms both flat and existing hierarchical reinforcement learning methods on four difficult continuous control tasks. 
    more » « less
  4. Learning a robot motor skill from scratch is impractically slow; so much so that in practice, learning must typically be bootstrapped using human demonstration. However, relying on human demonstration necessarily degrades the autonomy of robots that must learn a wide variety of skills over their operational lifetimes. We propose using kinematic motion planning as a completely autonomous, sample efficient way to bootstrap motor skill learning for object manipulation. We demonstrate the use of motion planners to bootstrap motor skills in two complex object manipulation scenarios with different policy representations: opening a drawer with a dynamic movement primitive representation, and closing a microwave door with a deep neural network policy. We also show how our method can bootstrap a motor skill for the challenging dynamic task of learning to hit a ball off a tee, where a kinematic plan based on treating the scene as static is insufficient to solve the task, but sufficient to bootstrap a more dynamic policy. In all three cases, our method is competitive with human-demonstrated initialization, and significantly outperforms starting with a random policy. This approach enables robots to to efficiently and autonomously learn motor policies for dynamic tasks without human demonstration. 
    more » « less
  5. We present a strategy for simulation-to-real transfer, which builds on recent advances in robot skill decomposition. Rather than focusing on minimizing the simulation–reality gap, we propose a method for increasing the sample efficiency and robustness of existing simulation-to-real approaches which exploits hierarchy and online adaptation. Instead of learning a unique policy for each desired robotic task, we learn a diverse set of skills and their variations, and embed those skill variations in a continuously parameterized space. We then interpolate, search, and plan in this space to find a transferable policy which solves more complex, high-level tasks by combining low-level skills and their variations. In this work, we first characterize the behavior of this learned skill space, by experimenting with several techniques for composing pre-learned latent skills. We then discuss an algorithm which allows our method to perform long-horizon tasks never seen in simulation, by intelligently sequencing short-horizon latent skills. Our algorithm adapts to unseen tasks online by repeatedly choosing new skills from the latent space, using live sensor data and simulation to predict which latent skill will perform best next in the real world. Importantly, our method learns to control a real robot in joint-space to achieve these high-level tasks with little or no on-robot time, despite the fact that the low-level policies may not be perfectly transferable from simulation to real, and that the low-level skills were not trained on any examples of high-level tasks. In addition to our results indicating a lower sample complexity for families of tasks, we believe that our method provides a promising template for combining learning-based methods with proven classical robotics algorithms such as model-predictive control.

     
    more » « less