skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ExecutionManager: A Software System to Control Execution of Third-Party Software That Performs Network Computations
We describe a software system called ExecutionManager (abbreviated EM) that controls the execution of third-party software (TPS) for analyzing networks. Based on a configuration file that contains a specification for the execution of each TPS, the system launches any number of stand-alone TPS codes, if the projected execution time and the graph size are within user-imposed limits. A system capability is to estimate the running time of a TPS code on a given network through regression analysis, to support execution decision-making by EM. We demonstrate the usefulness of EM in generating network structure parameters and distributions, and in extracting meta-data information from these results. We evaluate its performance on directed and undirected, simple and multi-edge graphs that range in size over seven orders of magnitude in numbers of edges, up to 1.5 billion edges. The software system is part of a cyberinfrastructure called net.science for network science.  more » « less
Award ID(s):
1916670
PAR ID:
10310254
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Winter Simulation Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wedescribeasoftwaresystemcalled ExecutionManager (abbreviated EM) thatcontrolstheexecutionof third-party software(TPS)foranalyzingnetworks.Basedonaconfigurationfilethatcontainsaspecification for theexecutionofeachTPS,thesystemlaunchesanynumberofstand-aloneTPScodes,iftheprojected executiontimeandthegraphsizearewithinuser-imposedlimits.Asystemcapabilityistoestimate the runningtimeofaTPScodeonagivennetworkthroughregressionanalysis,tosupportexecution decision-making by EM. Wedemonstratetheusefulnessof EM in generatingnetworkstructureparameters and distributions,andinextractingmeta-datainformationfromtheseresults.Weevaluateitsperformance on directedandundirected,simpleandmulti-edgegraphsthatrangeinsizeoversevenordersofmagnitude in numbersofedges,upto1.5billionedges.Thesoftwaresystemispartofacyberinfrastructurecalled net.science for networkscience. 
    more » « less
  2. Network representations of socio-physical systems are ubiquitous, examples being social (media) networks and infrastructure networks like power transmission andwater systems. The many software tools that analyze and visualize networks, and carry out simulations on them, require different graph formats. Consequently, it is important to develop software for converting graphs that are represented in a given source format into a required representation in a destination format. For network-based computations, graph conversion is a key capability that facilitates interoperability among software tools. This paper describes such a system called GraphTrans to convert graphs among different formats. This system is part of a new cyberinfrastructure for network science called net.science. We present the GraphTrans system design and implementation, results from a performance evaluation, and a case study to demonstrate its utility. 
    more » « less
  3. This paper presents Rolis, a new speedy and fault-tolerant replicated multi-core transactional database system. Rolis's aim is to mask the high cost of replication by ensuring that cores are always doing useful work and not waiting for each other or for other replicas. Rolis achieves this by not mixing the multi-core concurrency control with multi-machine replication, as is traditionally done by systems that use Paxos to replicate the transaction commit protocol. Instead, Rolis takes an "execute-replicate-replay" approach. Rolis first speculatively executes the transaction on the leader machine, and then replicates the per-thread transaction log to the followers using a novel protocol that leverages independent Paxos instances to avoid coordination, while still allowing followers to safely replay. The execution, replication, and replay are carefully designed to be scalable and have nearly zero coordination overhead across cores. Our evaluation shows that Rolis can achieve 1.03M TPS (transactions per second) on the TPC-C workload, using a 3-replica setup where each server has 32 cores. This throughput result is orders of magnitude higher than traditional software approaches we tested (e.g., 2PL), and is comparable to state-of-the-art, fault-tolerant, in-memory storage systems built using kernel bypass and advanced networking hardware, even though Rolis runs on commodity machines. 
    more » « less
  4. Formulating cryptographic definitions to protect against software piracy is an important research direction that has not received much attention. Since natural definitions using classical cryptography are impossible to achieve (as classical programs can always be copied), this directs us towards using techniques from quantum computing. The seminal work of Aaronson [CCC'09] introduced the notion of quantum copy-protection precisely to address the problem of software anti-piracy. However, despite being one of the most important problems in quantum cryptography, there are no provably secure solutions of quantum copy-protection known for {\em any} class of functions. We formulate an alternative definition for tackling software piracy, called quantum secure software leasing (QSSL). While weaker than quantum copy-protection, QSSL is still meaningful and has interesting applications in software anti-piracy. We present a construction of QSSL for a subclass of evasive circuits (that includes natural implementations of point functions, conjunctions with wild cards, and affine testers) based on concrete cryptographic assumptions. Our construction is the first provably secure solution, based on concrete cryptographic assumptions, for software anti-piracy. To complement our positive result, we show, based on cryptographic assumptions, that there is a class of quantum unlearnable functions for which QSSL does not exist. In particular, our impossibility result also rules out quantum copy-protection [Aaronson CCC'09] for an arbitrary class of quantum unlearnable functions; resolving an important open problem on the possibility of constructing copy-protection for arbitrary quantum unlearnable circuits. 
    more » « less
  5. Bitslicing is a software implementation technique that treats an N-bit processor datapath as N parallel single-bit datapaths. Bitslicing is particularly useful to implement data-parallel algorithms, algorithms that apply the same operation sequence to every element of a vector. Indeed, a bit-wise processor instruction applies the same logical operation to every single-bit slice. A second benefit of bitsliced execution is that the natural spatial redundancy of bitsliced software can support countermeasures against fault attacks. A k-redundant program on an N-bit processor then runs as N/k parallel redundant slices. In this contribution, we combine these two benefits of bitslicing to implement a fault countermeasure for the number-theoretic transform (NTT). The NTT eiciently implements a polynomial multiplication. The internal symmetry of the NTT algorithm lends itself to a data-parallel implementation, and hence it is a good candidate for the redundantly bitsliced implementation. We implement a redundantly bitsliced NTT on an advanced 667MHz ARM Cortex-A9 processor, and study the fault coverage for the protected NTT under optimized electromagnetic fault injection (EMFI). Our work brings two major contributions. First, we show for the irst time how to develop a redundantly bitsliced version of the NTT. We integrate the protected NTT into a full Dilithium signature sequence. Second, we demonstrate an EMFI analysis on a prototype implementation of the Dilithium signature sequence on ARM Cortex-M9. We perform a detailed EM fault-injection parameter search to optimize the location, intensity and timing of injected EM pulses. We demonstrate that, under optimized fault injection parameters, about 10% of the injected faults become potentially exploitable. However, the redundantly bitsliced NTT design is able to catch the majority of these potentially exploitable faults, even when the remainder of the Dilithium algorithm as well as the control low is left unprotected. To our knowledge, this is the irst demonstration of a bitslice-redundant design of the NTT that offers distributed fault detection throughout the execution of the algorithm. 
    more » « less