skip to main content


Title: Understanding Instructional Challenges and Approaches to Including Middle School Students with Disabilities in Makerspace activities: A cross-case analysis
Given the proliferation of makerspace experiences in K-12 education, there is a growing need to ensure accessibility for all learners, including those with disabilities and those at risk of academic failure. The limited research on these populations suggests that it is essential to examine how a broader range of learners participate in K-12 maker activities and any barriers that they face. We employed a cross-case qualitative methodology to investigate issues of participation and engagement by collaborating with four teachers who incorporated maker activities into STEM or science classes in four different middle schools. Across the four schools, teachers reported multiple challenges faced by learners including student-specific, instructional, and systemic barriers. Despites these challenges, however, we found evidence of students with disabilities meaningfully participating in maker activities. Implications for future research and practices are discussed from an ecological model perspective.  more » « less
Award ID(s):
1721236
NSF-PAR ID:
10310304
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
FabLearn '20: Proceedings of the FabLearn 2020 - 9th Annual Conference on Maker Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As school districts implement initiatives that bring computer science (CS) to academically diverse K-12 schools, they face heightened demands for supporting teachers in meeting the needs of a broad range of learners. However, limited knowledge exists about pedagogical approaches to teaching CS, especially to students with disabilities. This paper reports findings from a qualitative study of two CS instructional coaching models meant to support teachers in meeting the needs of diverse learners, including those with disabilities. One model involved a school-embedded coach and the other model involved a district-wide coach that traveled among multiple schools. Findings revealed that within both coaching models, co-planning and co-teaching played an integral role in supporting teachers in meeting the needs of students with disabilities. Instructional pedagogies that coaches promoted included scaffolded project planning, student collaboration, and immediate feedback to students. Within both coaching models, there was a focus on trust building and increasing teachers’ instructional skills. Differences between coaching models included a stronger level of familiarity between the coach and teachers in the school-embedded coaching. There were also different approaches to accountability and co-planning logistics. 
    more » « less
  2. This paper describes exploratory research that contributes to a more holistic model of professional development (PD) for middle school STEM teachers to support inclusive makerspace classrooms. Despite an increased focus on maker education in K-12 settings, teachers have reported limited support to deliver such instruction, especially with academically diverse learners. This case study examined instructional supports for teachers, including professional development and coaching focused on makerspace classroom activities, as well as structural conditions, the integration of metacognitive learning strategies, positive behavior supports, and Universal Design for Learning (UDL). Analysis of teacher interviews, surveys, and classroom observations revealed that teachers acknowledged the need for ongoing PD and the inclusion of UDL components into their lesson planning. 
    more » « less
  3. Engineering Explorations are curriculum modules that engage children across contexts in learning about science and engineering. We used them to leverage multiple education sectors (K–12 schools, museums, higher education, and afterschool programs) across a community to provide engineering learning experiences for youth, while increasing local teachers’ capacity to deliver high-quality engineering learning opportunities that align with school standards. Focusing on multiple partners that serve youth in the same community provides opportunities for long-term collaborations and programs developed in response to local needs. In a significant shift from earlier sets of standards, the Next Generation Science Standards include engineering design, with the goal of providing students with a foundation “to better engage in and aspire to solve the major societal and environmental challenges they will face in decades ahead” (NGSS Lead States 2013, Appendix I). Including engineering in K–12 standards is a positive step forward in introducing students to engineering; however, K–12 teachers are not prepared to facilitate high-quality engineering activities. Research has consistently shown that elementary teachers are not confident in teaching science, especially physical science, and generally have little knowledge of engineering (Trygstad 2013). K–12 teachers, therefore, will need support. Our goal was to create a program that took advantage of the varied resources across a STEM (science, technology, engineering, and math) education ecosystem to support engineering instruction for youth across multiple contexts, while building the capacity of educators and meeting the needs of each organization. Specifically, we developed mutually reinforcing classroom and field trip activities to improve student learning and a curriculum to improve teacher learning. This challenging task required expertise in school-based standards, engineering education, informal education, teacher professional development, and classroom and museum contexts. 
    more » « less
  4. null (Ed.)
    Developing narrative and computational thinking skills is crucial for K-12 student learning. A growing number of K-12 teachers are utilizing digital storytelling, where students create short narratives around a topic, as a means of creating motivating problem-solving activities for a variety of domains, including history and science. At the same time, there is increasing awareness of the need to engage K-12 students in computational thinking, including elementary school students. Given the challenges that the syntax of text-based programming languages poses for even novice university-level learners, block-based programming languages have emerged as an effective tool for introducing computational thinking to elementary-level students. Leveraging the unique affordances of narrative and computational thinking offers significant potential for student learning; however, integrating them presents significant challenges. In this paper, we describe initial work toward solving this problem by introducing an approach to block-based programming for interactive storytelling to engage upper elementary students (ages 9 to 11) in computational thinking and narrative skill development. Leveraging design principles and best practices from prior research on elementary-grade block-based programming and digital storytelling, we propose a set of custom blocks enabling learners to create interactive narratives. We describe both the process used to derive the custom blocks, including their alignment with elements of interactive narrative and with specific computational thinking curricular goals, as well as lessons learned from students interacting with a prototype learning environment utilizing the block-based programming approach. 
    more » « less
  5. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less