- Award ID(s):
- 1854049
- PAR ID:
- 10310330
- Date Published:
- Journal Name:
- PeerJ Computer Science
- Volume:
- 7
- ISSN:
- 2376-5992
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This paper (Wu 2016), which was published in AI EDAM online on August 22, 2016, has been retracted by Cambridge University Press as it is very similar in content to a published ASME Conference Proceedings paper. The article in question and the ASME Conference Proceedings paper were submitted for review with AI EDAM and the ASME at similar times, but copyright was assigned to ASME before the paper was accepted in AI EDAM and therefore the article in AI EDAM is being retracted. (In recent years, industrial nations around the globe have invested heavily in new technologies, software, and services to advance digital design and manufacturing using cyber-physical systems, data analytics, and high-performance computing. Many of these initiatives, such as cloud-based design and manufacturing, fall under the umbrella of what has become known as Industry 4.0 or Industrial Internet and are often hailed as pillars of a new industrial revolution. While an increasing number of companies are developing or already offer commercial cloud-based software packages and services for digital design and manufacturing, little work has been reported on providing a review of the state of the art of these commercial software and services as well as identifying research gaps in this field. The objective of this paper is to present a state-of-the-art review of digital design and manufacturing software and services that are currently available on the cloud. The focus of this paper is on assessing to what extent engineering design, engineering analysis, manufacturing, and production across all phases of the product development lifecycles can already be performed based on the software and services accessed through the cloud. In addition, the key capabilities and benefits of these software packages and services are discussed. Based on the assessment of the core features of commercial software and services, it can be concluded that almost all phases of product realization can be conducted through digital design and manufacturing software and services on the cloud. Finally, existing research gaps and related challenges to overcome are identified. The state-of-the-art review serves to provide a technology guide for decision makers in their efforts to select suitable cloud-based software and services as alternatives to existing in-house resources as well as to recommend new research areas.)more » « less
-
Apache Hadoop is a predominant software framework for distributed compute and storage with capability to handle huge amounts of data, usually referred to as Big Data. This data collected from different enterprises and government agencies often includes private and sensitive information, which needs to be secured from unauthorized access. This paper proposes extensions to the current authorization capabilities offered by Hadoop core and other ecosystem projects, specifically Apache Ranger and Apache Sentry. We present a fine-grained attribute-based access control model, referred as HeABAC, catering to the security and privacy needs of multi-tenant Hadoop ecosystem. The paper reviews the current multi-layered access control model used primarily in Hadoop core (2.x), Apache Ranger (version 0.6) and Sentry (version 1.7.0), as well as a previously proposed RBAC extension (OT-RBAC). It then presents a formal attribute-based access control model for Hadoop ecosystem, including the novel concept of cross Hadoop services trust. It further highlights different trust scenarios, presents an implementation approach for HeABAC using Apache Ranger and, discusses the administration requirements of HeABAC operational model. Some comprehensive, real-world use cases are also discussed to reflect the application and enforcement of the proposed HeABAC model in Hadoop ecosystem.more » « less
-
Modern automotive systems feature dozens of electronic control units (ECUs) for chassis, body and powertrain functions. These systems are costly and inflexible to upgrade, requiring ever increasing numbers of ECUs to support new features such as advanced driver assistance (ADAS), autonomous technologies, and infotainment. To counter these challenges, we propose DriveOS, a safe, secure, extensible, and timing-predictable system for modern vehicle management in a centralized platform. DriveOS is based on a separation kernel, where timing and safety-critical ECU functions are implemented in a real-time OS (RTOS) alongside non-critical software in Linux or Android. The system enforces the separation, or partitioning, of both software and hardware among different OSes. DriveOS runs on a relatively low-cost embedded PC-class platform, supporting multiple cores and hardware virtualization capabilities. Instrument cluster, in-vehicle infotainment and advanced driver assistance system services are implemented in a Yocto Linux guest, which communicates with critical real-time services via secure shared memory. The RTOS manages a real-time controller area network (CAN) interface that is inaccessible to Linux services except via well-defined and legitimate communication channels. In this work, we integrate three Qt-based services written for Yocto Linux, running in parallel with a real-time longitudinal controller task and multiple CAN bus concentrators, for vehicular sensor data processing and actuation. We demonstrate the benefits and performance of DriveOS with a hardware-in-the-loop CARLA simulation using a real car dataset.more » « less
-
The long-term monitoring of transportation infrastructure assets at a lower cost and with short mobilization time is of significant interest to both state and federal transportation agencies in the U.S. Because of the significant improvement in spatial and temporal resolution of synthetic aperture radar (SAR) remote sensing systems and a notable reduction in the cost of data acquisition, SAR has now become a viable method to provide economic and rapid condition assessment of transportation assets. A research study was developed and performed to comprehensively perform the inspection and characterization of a pavement surface based on the amplitude of backscattering of an X-band radar. In situ characterization of the test site was first performed using traditional inertial profilers and aerial photogrammetry with unmanned aerial vehicle (UAV) surveys. The results from these in situ methods were compared with the corrected amplitude of the SAR data, which indicated that the distribution of surface roughness values computed from the inertial profiler, UAV, and SAR exhibited similar probability densities at various segmental lengths considered in this study. This suggested that the problematic areas that are evident during in situ characterization can be delineated and quantified based on the normalized radar cross section of the pavement surface. Overall, the outcome of this research exhibits the potential of SAR for future transportation asset management undertakings, and the systematic framework developed as a part of this research could be of significant interest to engineers and transportation practitioners.
-
Post-quantum cryptography (PQC) refers to cryptographic algorithms that are thought to be secure against a cryptanalytic attack by a quantum computer. Before PQC algorithms can be widely deployed to replace the current standards such as the RSA algorithm, they need to be rigorously evaluated theoretically and practically. In this work, we present a cloud-based infrastructure being developed for performing side-channel analysis on PQC algorithms for the research community. Multiple types of side-channel attacks, such as timing attacks, power attacks, and electromagnetic attacks can be applied on different types of devices, such as FPGA devices and microcontrollers. An automated tool flow is being developed that can run executables on the target devices, collect traces (e.g., power consumption waveforms and electromagnetic radiation signals), perform leakage assessment (using Test Vector Leakage Assessment), and generate analysis reports. Remote users access the infrastructure through a web portal by uploading the hardware or software implementations of cryptographic algorithms. Side-channel attack and leakage analysis are performed on the given implementation. Finally, the user is informed for downloading the analysis report from the portal.more » « less