- Award ID(s):
- 1936359
- PAR ID:
- 10310339
- Date Published:
- Journal Name:
- Physical review letters
- Volume:
- 125
- ISSN:
- 1092-0145
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In fully-inverted atomic ensembles, photon-mediated interactions give rise to Dicke superradiance, a form of many-body decay that results in a rapid release of energy as a photon burst. While originally studied in point-like ensembles, this phenomenon persists in extended ordered systems if the inter-particle distance is below a certain bound. Here, we investigate Dicke superradiance in a realistic experimental setting using ordered arrays of alkaline earth(-like) atoms, such as strontium and ytterbium. Such atoms offer exciting new opportunities for light-matter interaction as their internal structure offers the possibility of trapping at short interatomic distances compared to their strong long-wavelength transitions, providing the potential for strong collectively modified interactions. Despite their intricate electronic structure, we show that two-dimensional arrays of these atomic species should exhibit many-body superradiance for achievable lattice constants. Moreover, superradiance effectively ''closes'' transitions, such that multilevel atoms become more two-level like. This occurs because the avalanche-like decay funnels the emission of most photons into the dominant transition, overcoming the single-atom decay ratios dictated by their fine structure and Zeeman branching. Our work represents an important step in harnessing alkaline-earth atoms as quantum optical sources and as dissipative generators of entanglement.more » « less
-
Chirality, or handedness, is a geometrical property denoting a lack of mirror symmetry. Chirality is ubiquitous in nature and is associated with the nonreciprocal interactions observed in complex systems ranging from biomolecules to topological materials. Here, we demonstrate that chiral arrangements of dipole-coupled atoms or molecules can facilitate the helicity-dependent superradiant emission of light. We show that the collective modes of these systems experience an emergent spin-orbit coupling that leads to chirality-dependent photon transport and nontrivial topological properties. These phenomena are fully described within the electric dipole approximation, resulting in very strong optical responses. Our results demonstrate an intimate connection between chirality, superradiance, and photon helicity and provide a comprehensive framework for studying electron transport dynamics in chiral molecules using cold atom quantum simulators.
Published by the American Physical Society 2024 -
In recent years, photon routing has garnered considerable research activity due to its key applications in quantum networking and optical communications. This paper studies the single photon routing scheme in many-emitter disordered chiral waveguide quantum electrodynamics (wQED) ladders. The wQED ladder consists of two one-dimensional lossless waveguides simultaneously and chirally coupled with a chain of dipole-dipole interacting two-level quantum emitters (QEs). In particular, we analyze how a departure from the periodic placement of the QEs due to temperature-induced position disorder can impact the routing probability. This involves analyzing how the interplay between the collective atomic effects originating from the dipole-dipole interaction and disorder in the atomic location leading to single-photon localization can change the routing probabilities. As for some key results, we find that the routing probability exhibits a considerable improvement (more than value) for periodic and disordered wQED ladders when considering lattices consisting of twenty QEs. This robustness of collective effects against spontaneous emission loss and weak disorders is further confirmed by examining the routing efficiency and localization length for up to twenty QE chains. These results may find applications in quantum networking and distributed quantum computing under the realistic conditions of imperfect emitter trappings.
-
Recent advances in generating well controlled dense arrangements of individual atoms in free space have generated interest in understanding how the extended nature of these systems influences superradiance phenomena. Here, we provide an in-depth analysis on how space-dependent light shifts and decay rates induced by dipole-dipole interactions modify the steady-state properties of coherently driven arrays of quantum emitters. We characterize the steady-state phase diagram, with particular focus on the radiative properties in the steady state. Interestingly, we find that diverging from the well-established Dicke paradigm of equal all-to-all interactions significantly modifies the emission properties. In particular, the prominent quadratic scaling of the radiated light intensity with particle number in the steady state—a hallmark of steady-state Dicke superradiance—is entirely suppressed, resulting in only linear scaling with particle number. We show that this breakdown of steady-state superradiance occurs due to the emergence of additional dissipation channels that populate not only superradiant states but also subradiant ones. The additional contribution of subradiant dark states in the dynamics leads to a divergence in the time scales needed to achieve steady states. Building on this, we further show that measurements taken at finite times for extended atom ensembles reveal properties closely mirroring the idealized Dicke scenario.
Published by the American Physical Society 2024 -
We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to a one-dimensional waveguide in the presence of delay. We demonstrate that analogous to the well-known superfluorescence phenomena, where an inverted atomic ensemble synchronizes to enhance its emission, there is a “subfluorescence” effect that synchronizes the atoms into an entangled dark state depending on the interatomic separation. The phenomenon can lead to a two-photon bound state in the continuum. Our results are pertinent to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between distant quantum emitters.
Published by the American Physical Society 2024