skip to main content


Title: Multiwavelength study of the luminous GRB 210619B observed with Fermi and ASIM
ABSTRACT We report on detailed multiwavelength observations and analysis of the very bright and long GRB 210619B, detected by the Atmosphere-Space Interactions Monitor installed on the International Space Station and the Gamma-ray Burst Monitor (GBM) on-board the Fermi mission. Our main goal is to understand the radiation mechanisms and jet composition of GRB 210619B. With a measured redshift of z = 1.937, we find that GRB 210619B falls within the 10 most luminous bursts observed by Fermi so far. The energy-resolved prompt emission light curve of GRB 210619B exhibits an extremely bright hard emission pulse followed by softer/longer emission pulses. The low-energy photon index (αpt) values obtained using the time-resolved spectral analysis of the burst suggest a transition between the thermal (during harder pulse) to non-thermal (during softer pulse) outflow. We examine the correlation between spectral parameters and find that both peak energy and αpt exhibit the flux tracking pattern. The late time broad-band photometric data set can be explained within the framework of the external forward shock model with νm < νc < νx (where νm, νc, and νx are the synchrotron peak, cooling-break, and X-ray frequencies, respectively) spectral regime supporting a rarely observed hard electron energy index (p < 2). We find moderate values of host extinction of E(B − V) = 0.14 ± 0.01 mag for the small magellanic cloud extinction law. In addition, we also report late-time optical observations with the 10.4 m Gran Telescopio de Canarias placing deep upper limits for the host galaxy (z = 1.937), favouring a faint, dwarf host for the burst.  more » « less
Award ID(s):
2011759
NSF-PAR ID:
10437790
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
519
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3201 to 3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multi-pulsed GRB 190530A, detected by the GBM and LAT onboard Fermi, is the sixth most fluent GBM burst detected so far. This paper presents the timing, spectral, and polarimetric analysis of the prompt emission observed using AstroSat and Fermi to provide insight into the prompt emission radiation mechanisms. The time-integrated spectrum shows conclusive proof of two breaks due to peak energy and a second lower energy break. Time-integrated (55.43 ± 21.30 %) as well as time-resolved polarization measurements, made by the Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat, show a hint of high degree of polarization. The presence of a hint of high degree of polarization and the values of low energy spectral index (αpt) do not run over the synchrotron limit for the first two pulses, supporting the synchrotron origin in an ordered magnetic field. However, during the third pulse, αpt exceeds the synchrotron line of death in few bins, and a thermal signature along with the synchrotron component in the time-resolved spectra is observed. Furthermore, we also report the earliest optical observations constraining afterglow polarization using the MASTER (P < 1.3 %) and the redshift measurement (z= 0.9386) obtained with the 10.4m GTC telescopes. The broadband afterglow can be described with a forward shock model for an ISM-like medium with a wide jet opening angle. We determine a circumburst density of n0 ∼ 7.41, kinetic energy EK ∼ 7.24 × 1054 erg, and radiated γ-ray energy Eγ, iso ∼ 6.05 × 1054 erg, respectively. 
    more » « less
  2. A thermal component is suggested to be the physical composition of the ejecta of several bright gamma-ray bursts (GRBs). Such a thermal component is discovered in the time-integrated spectra of several short GRBs as well as long GRBs. In this work, we present a comprehensive analysis of ten very short GRBs detected by Fermi Gamma-Ray Burst Monitor to search for the thermal component. We found that both the resultant low-energy spectral index and the peak energy in each GRB imply a common hard spectral feature, which is in favor of the main classification of the short/hard versus long/soft dichotomy in the GRB duration. We also found moderate evidence for the detection of thermal component in eight GRBs. Although such a thermal component contributes a small proportion of the global prompt gamma-ray emission, the modified thermal-radiation mechanism could enhance the proportion significantly, such as in subphotospheric dissipation. 
    more » « less
  3. Abstract We present a detailed prompt emission and early optical afterglow analysis of the two very-high-energy (VHE) detected bursts GRB 201015A and GRB 201216C, and their comparison with a subset of similar bursts. Time-resolved spectral analysis of multistructured GRB 201216C using the Bayesian binning algorithm revealed that during the entire duration of the burst, the low-energy spectral index ( α pt ) remained below the limit of the synchrotron line of death. However, statistically some of the bins supported the additional thermal component. Additionally, the evolution of spectral parameters showed that both the peak energy ( E p ) and α pt tracked the flux. These results were further strengthened using the values of the physical parameters obtained by synchrotron modeling of the data. Our earliest optical observations of both bursts using the F/Photometric Robotic Atmospheric Monitor Observatorio del Roque de los Muchachos and Burst Observer and Optical Transient Exploring System robotic telescopes displayed a smooth bump in their early optical light curves, consistent with the onset of the afterglow due to synchrotron emission from an external forward shock. Using the observed optical peak, we constrained the initial bulk Lorentz factors of GRB 201015A and GRB 201216C to Γ 0 = 204 and Γ 0 = 310, respectively. The present early optical observations are the earliest known observations constraining outflow parameters and our analysis indicate that VHE detected bursts could have a diverse range of observed luminosity within the detectable redshift range of present VHE facilities. 
    more » « less
  4. Abstract We present extensive optical photometry of the afterglow of GRB 221009A. Our data cover 0.9–59.9 days from the time of Swift and Fermi gamma-ray burst (GRB) detections. Photometry in rizy -band filters was collected primarily with Pan-STARRS and supplemented by multiple 1–4 m imaging facilities. We analyzed the Swift X-ray data of the afterglow and found a single decline rate power law f ( t ) ∝ t −1.556±0.002 best describes the light curve. In addition to the high foreground Milky Way dust extinction along this line of sight, the data favor additional extinction to consistently model the optical to X-ray flux with optically thin synchrotron emission. We fit the X-ray-derived power law to the optical light curve and find good agreement with the measured data up to 5−6 days. Thereafter we find a flux excess in the riy bands that peaks in the observer frame at ∼20 days. This excess shares similar light-curve profiles to the Type Ic broad-lined supernovae SN 2016jca and SN 2017iuk once corrected for the GRB redshift of z = 0.151 and arbitrarily scaled. This may be representative of an SN emerging from the declining afterglow. We measure rest-frame absolute peak AB magnitudes of M g = −19.8 ± 0.6 and M r = − 19.4 ± 0.3 and M z = −20.1 ± 0.3. If this is an SN component, then Bayesian modeling of the excess flux would imply explosion parameters of M ej = 7.1 − 1.7 + 2.4 M ⊙ , M Ni = 1.0 − 0.4 + 0.6 M ⊙ , and v ej = 33,900 − 5700 + 5900 km s −1 , for the ejecta mass, nickel mass, and ejecta velocity respectively, inferring an explosion energy of E kin ≃ 2.6–9.0 × 10 52 erg. 
    more » « less
  5. Abstract Gamma-ray bursts (GRBs) exhibit a diversity of spectra. Several spectral models (e.g., Band, cutoff power law (CPL), and blackbody) and their hybrid versions (e.g., Band+blackbody) have been widely used to fit the observed GRB spectra. Here, we attempt to collect all the bursts detected by Fermi/GBM with known redshifts from 2008 July to 2022 May, having been motivated to (i) provide a parameter catalog independent of the official Fermi/GBM team and (ii) achieve a “clean” model-based GRB spectral energy correlation analysis. A nearly complete GRB sample is created, containing 153 such bursts (136 long GRBs and 17 short GRBs). Using the sample and by performing detailed spectral analysis and model comparisons, we investigate two GRB spectral energy correlations: the correlation of the cosmological rest-frame peak energy ( E p, z ) of the ν F ν prompt emission spectrum with (i) the isotropic-bolometric-equivalent emission energy E γ ,iso (the Amati relation) and (ii) the isotropic-bolometric-equivalent peak luminosity L p,iso (the Yonetoku relation). From a linear regression analysis, a tight correlation between E p, z and E γ ,iso (and L γ ,iso ) is found for both Band-like and CPL-like bursts (except for CPL-like long burst E p, z – E γ ,iso correlation). More interestingly, CPL-like bursts do not fall on the Band-like burst Amati and Yonetoku correlations, suggesting distinct radiation processes, and pointing to the fact that these spectral energy correlations are tightly reliant on the model-wise properties. 
    more » « less