skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous Classification of Locomotion in Response to Task Complexity and Anticipatory State
Objective Intent recognition in lower-extremity assistive devices (e.g., prostheses and exoskeletons) is typically limited to either recognition of steady-state locomotion or changes of terrain (e.g., level ground to stair) occurring in a straight-line path and under anticipated condition. Stability is highly affected during non-steady changes of direction such as cuts especially when they are unanticipated, posing high risk of fall-related injuries. Here, we studied the influence of changes of direction and user anticipation on task recognition, and accordingly introduced classification schemes accommodating such effects. Methods A linear discriminant analysis (LDA) classifier continuously classified straight-line walking, sidestep/crossover cuts (single transitions), and cuts-to-stair locomotion (mixed transitions) performed under varied task anticipatory conditions. Training paradigms with varying levels of anticipated/unanticipated exposures and analysis windows of size 100–600 ms were examined. Results More accurate classification of anticipated relative to unanticipated tasks was observed. Including bouts of target task in the training data was necessary to improve generalization to unanticipated locomotion. Only up to two bouts of target task were sufficient to reduce errors to <20% in unanticipated mixed transitions, whereas, in single transitions and straight walking, substantial unanticipated information (i.e., five bouts) was necessary to achieve similar outcomes. Window size modifications did not have a significant influence on classification performance. Conclusion Adjusting the training paradigm helps to achieve classification schemes capable of adapting to changes of direction and task anticipatory state. Significance The findings could provide insight into developing classification schemes that can adapt to changes of direction and user anticipation. They could inform intent recognition strategies for controlling lower-limb assistive to robustly handle “unknown” circumstances, and thus deliver increased level of reliability and safety.  more » « less
Award ID(s):
2054343
PAR ID:
10310441
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Bioengineering and Biotechnology
Volume:
9
ISSN:
2296-4185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intent recognition in lower-limb assistive devices typically relies on neuromechanical sensing of an affected limb acquired through embedded device sensors. It remains unknown whether signals from more widespread sources such as the contralateral leg and torso positively influence intent recognition, and how specific locomotor tasks that place high demands on the neuromuscular system, such as changes of direction, contribute to intent recognition. In this study, we evaluated the performances of signals from varying mechanical modalities (accelerographic, gyroscopic, and joint angles) and locations (the trailing leg, leading leg and torso) during straight walking, changes of direction (cuts), and cuts to stair ascent with varying task anticipation. Biomechanical information from the torso demonstrated poor performance across all conditions. Unilateral (the trailing or leading leg) joint angle data provided the highest accuracy. Surprisingly, neither the fusion of unilateral and torso data nor the combination of multiple signal modalities improved recognition. For these fused modality data, similar trends but with diminished accuracy rates were reported during unanticipated conditions. Finally, for datasets that achieved a relatively accurate (≥90%) recognition of unanticipated tasks, these levels of recognition were achieved after the mid-swing of the trailing/transitioning leg, prior to a subsequent heel strike. These findings suggest that mechanical sensing of the legs and torso for the recognition of straight-line and transient locomotion can be implemented in a relatively flexible manner (i.e., signal modality, and from the leading or trailing legs) and, importantly, suggest that more widespread sensing is not always optimal. 
    more » « less
  2. Fundamental knowledge in activity recognition of individuals with motor disorders such as Parkinson’s disease (PD) has been primarily limited to detection of steady-state/static tasks (e.g., sitting, standing, walking). To date, identification of non-steady-state locomotion on uneven terrains (stairs, ramps) has not received much attention. Furthermore, previous research has mainly relied on data from a large number of body locations which could adversely affect user convenience and system performance. Here, individuals with mild stages of PD and healthy subjects performed non-steady-state circuit trials comprising stairs, ramp, and changes of direction. An offline analysis using a linear discriminant analysis (LDA) classifier and a Long-Short Term Memory (LSTM) neural network was performed for task recognition. The performance of accelerographic and gyroscopic information from varied lower/upper-body segments were tested across a set of user-independent and user-dependent training paradigms. Comparing the F1 score of a given signal across classifiers showed improved performance using LSTM compared to LDA. Using LSTM, even a subset of information (e.g., feet data) in subject-independent training appeared to provide F1 score > 0.8. However, employing LDA was shown to be at the expense of being limited to using a subject-dependent training and/or biomechanical data from multiple body locations. The findings could inform a number of applications in the field of healthcare monitoring and developing advanced lower-limb assistive devices by providing insights into classification schemes capable of handling non-steady-state and unstructured locomotion in individuals with mild Parkinson’s disease. 
    more » « less
  3. Abstract Human ambulation is typically characterized during steady-state isolated tasks (e.g., walking, running, stair ambulation). However, general human locomotion comprises continuous adaptation to the varied terrains encountered during activities of daily life. To fill an important gap in knowledge that may lead to improved therapeutic and device interventions for mobility-impaired individuals, it is vital to identify how the mechanics of individuals change as they transition between different ambulatory tasks, and as they encounter terrains of differing severity. In this work, we study lower-limb joint kinematics during the transitions between level walking and stair ascent and descent over a range of stair inclination angles. Using statistical parametric mapping, we identify where and when the kinematics of transitions are unique from the adjacent steady-state tasks. Results show unique transition kinematics primarily in the swing phase, which are sensitive to stair inclination. We also train Gaussian process regression models for each joint to predict joint angles given the gait phase, stair inclination, and ambulation context (transition type, ascent/descent), demonstrating a mathematical modeling approach that successfully incorporates terrain transitions and severity. The results of this work further our understanding of transitory human biomechanics and motivate the incorporation of transition-specific control models into mobility-assistive technology. 
    more » « less
  4. Walking in real-world environments involves constant decision-making, e.g., when approaching a staircase, an individual decides whether to engage (climbing the stairs) or avoid. For the control of assistive robots (e.g., robotic lower-limb prostheses), recognizing such motion intent is an important but challenging task, primarily due to the lack of available information. This paper presents a novel vision-based method to recognize an individual’s motion intent when approaching a staircase before the potential transition of motion mode (walking to stair climbing) occurs. Leveraging the egocentric images from a head-mounted camera, the authors trained a YOLOv5 object detection model to detect staircases. Subsequently, an AdaBoost and gradient boost (GB) classifier was developed to recognize the individual’s intention of engaging or avoiding the upcoming stairway. This novel method has been demonstrated to provide reliable (97.69%) recognition at least 2 steps before the potential mode transition, which is expected to provide ample time for the controller mode transition in an assistive robot in real-world use. 
    more » « less
  5. Wagner, A.R.; null (Ed.)
    Collaborative robots that provide anticipatory assistance are able to help people complete tasks more quickly. As anticipatory assistance is provided before help is explicitly requested, there is a chance that this action itself will influence the person’s future decisions in the task. In this work, we investigate whether a robot’s anticipatory assistance can drive people to make choices different from those they would otherwise make. Such a study requires measuring intent, which itself could modify intent, resulting in an observer paradox. To combat this, we carefully designed an experiment to avoid this effect. We considered several mitigations such as the careful choice of which human behavioral signals we use to measure intent and designing unobtrusive ways to obtain these signals. We conducted a user study (𝑁=99) in which participants completed a collaborative object retrieval task: users selected an object and a robot arm retrieved it for them. The robot predicted the user’s object selection from eye gaze in advance of their explicit selection, and then provided either collaborative anticipation (moving toward the predicted object), adversarial anticipation (moving away from the predicted object), or no anticipation (no movement, control condition). We found trends and participant comments suggesting people’s decision making changes in the presence of a robot anticipatory motion and this change differs depending on the robot’s anticipation strategy. 
    more » « less