skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Activity Recognition Framework for Continuous Monitoring of Non-Steady-State Locomotion of Individuals with Parkinson’s Disease
Fundamental knowledge in activity recognition of individuals with motor disorders such as Parkinson’s disease (PD) has been primarily limited to detection of steady-state/static tasks (e.g., sitting, standing, walking). To date, identification of non-steady-state locomotion on uneven terrains (stairs, ramps) has not received much attention. Furthermore, previous research has mainly relied on data from a large number of body locations which could adversely affect user convenience and system performance. Here, individuals with mild stages of PD and healthy subjects performed non-steady-state circuit trials comprising stairs, ramp, and changes of direction. An offline analysis using a linear discriminant analysis (LDA) classifier and a Long-Short Term Memory (LSTM) neural network was performed for task recognition. The performance of accelerographic and gyroscopic information from varied lower/upper-body segments were tested across a set of user-independent and user-dependent training paradigms. Comparing the F1 score of a given signal across classifiers showed improved performance using LSTM compared to LDA. Using LSTM, even a subset of information (e.g., feet data) in subject-independent training appeared to provide F1 score > 0.8. However, employing LDA was shown to be at the expense of being limited to using a subject-dependent training and/or biomechanical data from multiple body locations. The findings could inform a number of applications in the field of healthcare monitoring and developing advanced lower-limb assistive devices by providing insights into classification schemes capable of handling non-steady-state and unstructured locomotion in individuals with mild Parkinson’s disease.  more » « less
Award ID(s):
2054343
PAR ID:
10470605
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Applied Sciences
Volume:
12
Issue:
9
ISSN:
2076-3417
Page Range / eLocation ID:
4682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Unified Parkinson’s Disease Rating Scale (UPDRS) is used to recognize patients with Parkinson’s disease (PD) and rate its severity. The rating is crucial for disease progression monitoring and treatment adjustment. This study aims to advance the capabilities of PD management by developing an innovative framework that integrates deep learning with wearable sensor technology to enhance the precision of UPDRS assessments. We introduce a series of deep learning models to estimate UPDRS Part III scores, utilizing motion data from wearable sensors. Our approach leverages a novel Multi-shared-task Self-supervised Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) framework that processes raw gyroscope signals and their spectrogram representations. This technique aims to refine the estimation accuracy of PD severity during naturalistic human activities. Utilizing 526 min of data from 24 PD patients engaged in everyday activities, our methodology demonstrates a strong correlation of 0.89 between estimated and clinically assessed UPDRS-III scores. This model outperforms the benchmark set by single and multichannel CNN, LSTM, and CNN-LSTM models and establishes a new standard in UPDRS-III score estimation for free-body movements compared to recent state-of-the-art methods. These results signify a substantial step forward in bioengineering applications for PD monitoring, providing a robust framework for reliable and continuous assessment of PD symptoms in daily living settings. 
    more » « less
  2. Objective Intent recognition in lower-extremity assistive devices (e.g., prostheses and exoskeletons) is typically limited to either recognition of steady-state locomotion or changes of terrain (e.g., level ground to stair) occurring in a straight-line path and under anticipated condition. Stability is highly affected during non-steady changes of direction such as cuts especially when they are unanticipated, posing high risk of fall-related injuries. Here, we studied the influence of changes of direction and user anticipation on task recognition, and accordingly introduced classification schemes accommodating such effects. Methods A linear discriminant analysis (LDA) classifier continuously classified straight-line walking, sidestep/crossover cuts (single transitions), and cuts-to-stair locomotion (mixed transitions) performed under varied task anticipatory conditions. Training paradigms with varying levels of anticipated/unanticipated exposures and analysis windows of size 100–600 ms were examined. Results More accurate classification of anticipated relative to unanticipated tasks was observed. Including bouts of target task in the training data was necessary to improve generalization to unanticipated locomotion. Only up to two bouts of target task were sufficient to reduce errors to <20% in unanticipated mixed transitions, whereas, in single transitions and straight walking, substantial unanticipated information (i.e., five bouts) was necessary to achieve similar outcomes. Window size modifications did not have a significant influence on classification performance. Conclusion Adjusting the training paradigm helps to achieve classification schemes capable of adapting to changes of direction and task anticipatory state. Significance The findings could provide insight into developing classification schemes that can adapt to changes of direction and user anticipation. They could inform intent recognition strategies for controlling lower-limb assistive to robustly handle “unknown” circumstances, and thus deliver increased level of reliability and safety. 
    more » « less
  3. null (Ed.)
    Abstract Background Unified Parkinson Disease Rating Scale-part III (UPDRS III) is part of the standard clinical examination performed to track the severity of Parkinson’s disease (PD) motor complications. Wearable technologies could be used to reduce the need for on-site clinical examinations of people with Parkinson’s disease (PwP) and provide a reliable and continuous estimation of the severity of PD at home. The reported estimation can be used to successfully adjust the dose and interval of PD medications. Methods We developed a novel algorithm for unobtrusive and continuous UPDRS-III estimation at home using two wearable inertial sensors mounted on the wrist and ankle. We used the ensemble of three deep-learning models to detect UPDRS-III-related patterns from a combination of hand-crafted features, raw temporal signals, and their time–frequency representation. Specifically, we used a dual-channel, Long Short-Term Memory (LSTM) for hand-crafted features, 1D Convolutional Neural Network (CNN)-LSTM for raw signals, and 2D CNN-LSTM for time–frequency data. We utilized transfer learning from activity recognition data and proposed a two-stage training for the CNN-LSTM networks to cope with the limited amount of data. Results The algorithm was evaluated on gyroscope data from 24 PwP as they performed different daily living activities. The estimated UPDRS-III scores had a correlation of $$0.79\, (\textit{p}<0.0001)$$ 0.79 ( p < 0.0001 ) and a mean absolute error of 5.95 with the clinical examination scores without requiring the patients to perform any specific tasks. Conclusion Our analysis demonstrates the potential of our algorithm for estimating PD severity scores unobtrusively at home. Such an algorithm could provide the required motor-complication measurements without unnecessary clinical visits and help the treating physician provide effective management of the disease. 
    more » « less
  4. Autonomous lower-limb exoskeletons must modulate assistance based on locomotion mode (e.g., ramp or stair ascent) to adapt to the corresponding changes in human biological joint dynamics. However, current mode classification strategies for exoskeletons often require user-specific tuning, have a slow update rate, and rely on additional sensors outside of the exoskeleton sensor suite. In this study, we introduce a deep convolutional neural network-based locomotion mode classifier for hip exoskeleton applications using an open-source gait biomechanics dataset with various wearable sensors. Our approach removed the limitations of previous systems as it is 1) subject-independent (i.e., no user-specific data), 2) capable of continuously classifying for smooth and seamless mode transitions, and 3) only utilizes minimal wearable sensors native to a conventional hip exoskeleton. We optimized our model, based on several important factors contributing to overall performance, such as transition label timing, model architecture, and sensor placement, which provides a holistic understanding of mode classifier design. Our optimized DL model showed a 3.13% classification error (steady-state: 0.80 ± 0.38% and transitional: 6.49 ± 1.42%), outperforming other machine learning-based benchmarks commonly practiced in the field (p<0.05). Furthermore, our multi-modal analysis indicated that our model can maintain high performance in different settings such as unseen slopes on stairs or ramps. Thus, our study presents a novel locomotion mode framework, capable of advancing robotic exoskeleton applications toward assisting community ambulation. 
    more » « less
  5. Tremor is one of the main symptoms of Parkinson’s Disease (PD) that reduces the quality of life. Tremor is measured as part of the Unified Parkinson Disease Rating Scale (UPDRS) part III. However, the assessment is based on onsite physical examinations and does not fully represent the patients’ tremor experience in their day-to-day life. Our objective in this paper was to develop algorithms that, combined with wearable sensors, can estimate total Parkinsonian tremor as the patients performed a variety of free body movements. We developed two methods: an ensemble model based on gradient tree boosting and a deep learning model based on long short-term memory (LSTM) networks. The developed methods were assessed on gyroscope sensor data from 24 PD subjects. Our analysis demonstrated that the method based on gradient tree boosting provided a high correlation (r = 0.96 using held-out testing and r = 0.93 using subject-based, leave-one-out cross-validation) between the estimated and clinically assessed tremor subscores in comparison to the LSTM-based method with a moderate correlation (r = 0.84 using held-out testing and r = 0.77 using subject-based, leave-one-out cross-validation). These results indicate that our approach holds great promise in providing a full spectrum of the patients’ tremor from continuous monitoring of the subjects’ movement in their natural environment. 
    more » « less