skip to main content

Title: Biomechanical Signals of Varied Modality and Location Contribute Differently to Recognition of Transient Locomotion
Intent recognition in lower-limb assistive devices typically relies on neuromechanical sensing of an affected limb acquired through embedded device sensors. It remains unknown whether signals from more widespread sources such as the contralateral leg and torso positively influence intent recognition, and how specific locomotor tasks that place high demands on the neuromuscular system, such as changes of direction, contribute to intent recognition. In this study, we evaluated the performances of signals from varying mechanical modalities (accelerographic, gyroscopic, and joint angles) and locations (the trailing leg, leading leg and torso) during straight walking, changes of direction (cuts), and cuts to stair ascent with varying task anticipation. Biomechanical information from the torso demonstrated poor performance across all conditions. Unilateral (the trailing or leading leg) joint angle data provided the highest accuracy. Surprisingly, neither the fusion of unilateral and torso data nor the combination of multiple signal modalities improved recognition. For these fused modality data, similar trends but with diminished accuracy rates were reported during unanticipated conditions. Finally, for datasets that achieved a relatively accurate (≥90%) recognition of unanticipated tasks, these levels of recognition were achieved after the mid-swing of the trailing/transitioning leg, prior to a subsequent heel strike. These findings suggest that more » mechanical sensing of the legs and torso for the recognition of straight-line and transient locomotion can be implemented in a relatively flexible manner (i.e., signal modality, and from the leading or trailing legs) and, importantly, suggest that more widespread sensing is not always optimal. « less
Authors:
;
Award ID(s):
2054343
Publication Date:
NSF-PAR ID:
10310442
Journal Name:
Sensors
Volume:
20
Issue:
18
ISSN:
1424-8220
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective Intent recognition in lower-extremity assistive devices (e.g., prostheses and exoskeletons) is typically limited to either recognition of steady-state locomotion or changes of terrain (e.g., level ground to stair) occurring in a straight-line path and under anticipated condition. Stability is highly affected during non-steady changes of direction such as cuts especially when they are unanticipated, posing high risk of fall-related injuries. Here, we studied the influence of changes of direction and user anticipation on task recognition, and accordingly introduced classification schemes accommodating such effects. Methods A linear discriminant analysis (LDA) classifier continuously classified straight-line walking, sidestep/crossover cuts (single transitions), and cuts-to-stair locomotion (mixed transitions) performed under varied task anticipatory conditions. Training paradigms with varying levels of anticipated/unanticipated exposures and analysis windows of size 100–600 ms were examined. Results More accurate classification of anticipated relative to unanticipated tasks was observed. Including bouts of target task in the training data was necessary to improve generalization to unanticipated locomotion. Only up to two bouts of target task were sufficient to reduce errors to <20% in unanticipated mixed transitions, whereas, in single transitions and straight walking, substantial unanticipated information (i.e., five bouts) was necessary to achieve similar outcomes. Window size modifications did not havemore »a significant influence on classification performance. Conclusion Adjusting the training paradigm helps to achieve classification schemes capable of adapting to changes of direction and task anticipatory state. Significance The findings could provide insight into developing classification schemes that can adapt to changes of direction and user anticipation. They could inform intent recognition strategies for controlling lower-limb assistive to robustly handle “unknown” circumstances, and thus deliver increased level of reliability and safety.« less
  2. Clinical translation of “intelligent” lower-limb assistive technologies relies on robust control interfaces capable of accurately detecting user intent. To date, mechanical sensors and surface electromyography (EMG) have been the primary sensing modalities used to classify ambulation. Ultrasound (US) imaging can be used to detect user-intent by characterizing structural changes of muscle. Our study evaluates wearable US imaging as a new sensing modality for continuous classification of five discrete ambulation modes: level, incline, decline, stair ascent, and stair descent ambulation, and benchmarks performance relative to EMG sensing. Ten able-bodied subjects were equipped with a wearable US scanner and eight unilateral EMG sensors. Time-intensity features were recorded from US images of three thigh muscles. Features from sliding windows of EMG signals were analyzed in two configurations: one including 5 EMG sensors on muscles around the thigh, and another with 3 additional sensors placed on the shank. Linear discriminate analysis was implemented to continuously classify these phase-dependent features of each sensing modality as one of five ambulation modes. US-based sensing statistically improved mean classification accuracy to 99.8% (99.5-100% CI) compared to 8-EMG sensors (85.8%; 84.0-87.6% CI) and 5-EMG sensors (75.3%; 74.5-76.1% CI). Further, separability analyses show the importance of superficial and deep USmore »information for stair classification relative to other modes. These results are the first to demonstrate the ability of US-based sensing to classify discrete ambulation modes, highlighting the potential for improved assistive device control using less widespread, less superficial and higher resolution sensing of skeletal muscle.« less
  3. Abstract

    Small cursorial birds display remarkable walking skills and can negotiate complex and unstructured terrains with ease. The neuromechanical control strategies necessary to adapt to these challenging terrains are still not well understood. Here, we analyzed the 2D- and 3D pelvic and leg kinematic strategies employed by the common quail to negotiate visible steps (upwards and downwards) of about 10%, and 50% of their leg length. We used biplanar fluoroscopy to accurately describe joint positions in three dimensions and performed semi-automatic landmark localization using deep learning. Quails negotiated the vertical obstacles without major problems and rapidly regained steady-state locomotion. When coping with step upwards, the quail mostly adapted the trailing limb to permit the leading leg to step on the elevated substrate similarly as it did during level locomotion. When negotiated steps downwards, both legs showed significant adaptations. For those small and moderate step heights that did not induce aerial running, the quail kept the kinematic pattern of the distal joints largely unchanged during uneven locomotion, and most changes occurred in proximal joints. The hip regulated leg length, while the distal joints maintained the spring-damped limb patterns. However, to negotiate the largest visible steps, more dramatic kinematic alterations were observed.more »There all joints contributed to leg lengthening/shortening in the trailing leg, and both the trailing and leading legs stepped more vertically and less abducted. In addition, locomotion speed was decreased. We hypothesize a shift from a dynamic walking program to more goal-directed motions that might be focused on maximizing safety.

    « less
  4. Abstract Successful motor control requires accurate estimation of our body in space for planning, executing, and evaluating the outcome of our actions. It has been shown that the estimation of limb position is susceptible to motor adaptation. However, a similar effect has not been found in locomotion, possibly due to how it was tested. We hypothesized that split-belt walking with the legs moving at different speeds changes the estimation of the legs’ position when taking a step. Thus, we assessed young subjects’ perception of step length (i.e., inter-feet distance at foot landing) when they moved their legs (active perception) or when the legs were moved by the experimenter (passive perception). We found that the active perception of step length was substantially altered following split-belt walking, whereas passive perception exhibited minor changes. This suggests that split-belt walking induced the adaptation of efferent signals, without altering sensory signals. We also found that active perceptual shifts were sensitive to how they were tested: they were most salient in the trailing leg and at short step lengths. Our results suggest that split-belt walking could modulate the deficient perception of step length post-stroke, which may contribute to gait asymmetries impairing patients’ mobility.
  5. For the controller of wearable lower-limb assistive devices, quantitative understanding of human locomotion serves as the basis for human motion intent recognition and joint-level motion control. Traditionally, the required gait data are obtained in gait research laboratories, utilizing marker-based optical motion capture systems. Despite the high accuracy of measurement, marker-based systems are largely limited to laboratory environments, making it nearly impossible to collect the desired gait data in real-world daily-living scenarios. To address this problem, the authors propose a novel exoskeleton-based gait data collection system, which provides the capability of conducting independent measurement of lower limb movement without the need for stationary instrumentation. The basis of the system is a lightweight exoskeleton with articulated knee and ankle joints. To minimize the interference to a wearer’s natural lower-limb movement, a unique two-degrees-of-freedom joint design is incorporated, integrating a primary degree of freedom for joint motion measurement with a passive degree of freedom to allow natural joint movement and improve the comfort of use. In addition to the joint-embedded goniometers, the exoskeleton also features multiple positions for the mounting of inertia measurement units (IMUs) as well as foot-plate-embedded force sensing resistors to measure the foot plantar pressure. All sensor signals are routedmore »to a microcontroller for data logging and storage. To validate the exoskeleton-provided joint angle measurement, a comparison study on three healthy participants was conducted, which involves locomotion experiments in various modes, including overground walking, treadmill walking, and sit-to-stand and stand-to-sit transitions. Joint angle trajectories measured with an eight-camera motion capture system served as the benchmark for comparison. Experimental results indicate that the exoskeleton-measured joint angle trajectories closely match those obtained through the optical motion capture system in all modes of locomotion (correlation coefficients of 0.97 and 0.96 for knee and ankle measurements, respectively), clearly demonstrating the accuracy and reliability of the proposed gait measurement system.« less