skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Newton Sketch: Linear-time Optimization with Quadratic Convergence and Effective Hessian Dimensionality
We propose a randomized algorithm with quadratic convergence rate for convex optimization problems with a self-concordant, composite, strongly convex objective function. Our method is based on performing an approximate Newton step using a random projection of the Hessian. Our first contribution is to show that, at each iteration, the embedding dimension (or sketch size) can be as small as the effective dimension of the Hessian matrix. Leveraging this novel fundamental result, we design an algorithm with a sketch size proportional to the effective dimension and which exhibits a quadratic rate of convergence. This result dramatically improves on the classical linear-quadratic convergence rates of state-of-theart sub-sampled Newton methods. However, in most practical cases, the effective dimension is not known beforehand, and this raises the question of how to pick a sketch size as small as the effective dimension while preserving a quadratic convergence rate. Our second and main contribution is thus to propose an adaptive sketch size algorithm with quadratic convergence rate and which does not require prior knowledge or estimation of the effective dimension: at each iteration, it starts with a small sketch size, and increases it until quadratic progress is achieved. Importantly, we show that the embedding dimension remains proportional to the effective dimension throughout the entire path and that our method achieves state-of-the-art computational complexity for solving convex optimization programs with a strongly convex component. We discuss and illustrate applications to linear and quadratic programming, as well as logistic regression and other generalized linear models.  more » « less
Award ID(s):
1838179
PAR ID:
10310553
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Preceedings of the 38th International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Second-order optimization methods, such as cubic regularized Newton methods, are known for their rapid convergence rates; nevertheless, they become impractical in high-dimensional problems due to their substantial memory requirements and computational costs. One promising approach is to execute second order updates within a lower-dimensional subspace, giving rise to \textit{subspace second-order} methods. However, the majority of existing subspace second-order methods randomly select subspaces, consequently resulting in slower convergence rates depending on the problem's dimension $$d$$. In this paper, we introduce a novel subspace cubic regularized Newton method that achieves a dimension-independent global convergence rate of $$\bigO\left(\frac{1}{mk}+\frac{1}{k^2}\right)$$ for solving convex optimization problems. Here, $$m$$ represents the subspace dimension, which can be significantly smaller than $$d$$. Instead of adopting a random subspace, our primary innovation involves performing the cubic regularized Newton update within the \emph{Krylov subspace} associated with the Hessian and the gradient of the objective function. This result marks the first instance of a dimension-independent convergence rate for a subspace second-order method. Furthermore, when specific spectral conditions of the Hessian are met, our method recovers the convergence rate of a full-dimensional cubic regularized Newton method. Numerical experiments show our method converges faster than existing random subspace methods, especially for high-dimensional problems. 
    more » « less
  2. null (Ed.)
    In this article, Momentum Iterative Hessian Sketch (M-IHS) techniques, a group of solvers for large scale linear Least Squares (LS) problems, are proposed and analyzed in detail. The proposed techniques are obtained by incorporating the Heavy Ball Acceleration into the Iterative Hessian Sketch algorithm and they provide significant improvements over the randomized preconditioning techniques. Through the error analyses of the M-IHS variants, lower bounds on the sketch size for various randomized distributions to converge at a pre-determined rate with a constant probability are established. The bounds present the best results in the current literature for obtaining a solution approximation and they suggest that the sketch size can be chosen proportional to the statistical dimension of the regularized problem regardless of the size of the coefficient matrix. The statistical dimension is always smaller than the rank and it gets smaller as the regularization parameter increases. By using approximate solvers along with the iterations, the M-IHS variants are capable of avoiding all matrix decompositions and inversions, which is one of the main advantages over the alternative solvers such as the Blendenpik and the LSRN. Similar to the Chebyshev Semi-iterations, the M-IHS variants do not use any inner products and eliminate the corresponding synchronizations steps in hierarchical or distributed memory systems, yet the M-IHS converges faster than the Chebyshev Semi-iteration based solvers 
    more » « less
  3. Quasi-Newton algorithms are among the most popular iterative methods for solving unconstrained minimization problems, largely due to their favorable superlinear convergence property. However, existing results for these algorithms are limited as they provide either (i) a global convergence guarantee with an asymptotic superlinear convergence rate, or (ii) a local non-asymptotic superlinear rate for the case that the initial point and the initial Hessian approximation are chosen properly. In particular, no current analysis for quasi-Newton methods guarantees global convergence with an explicit superlinear convergence rate. In this paper, we close this gap and present the first globally convergent quasi-Newton method with an explicit non asymptotic superlinear convergence rate. Unlike classical quasi-Newton methods, we build our algorithm upon the hybrid proximal extragradient method and propose a novel online learning framework for updating the Hessian approximation matrices. Specifically, guided by the convergence analysis, we formulate the Hessian approximation update as an online convex optimization problem in the space of matrices, and we relate the bounded regret of the online problem to the superlinear convergence of our method. 
    more » « less
  4. This work concerns the local convergence theory of Newton and quasi-Newton methods for convex-composite optimization: where one minimizes an objective that can be written as the composition of a convex function with one that is continuiously differentiable. We focus on the case in which the convex function is a potentially infinite-valued piecewise linear-quadratic function. Such problems include nonlinear programming, mini-max optimization, and estimation of nonlinear dynamics with non-Gaussian noise as well as many modern approaches to large-scale data analysis and machine learning. Our approach embeds the optimality conditions for convex-composite optimization problems into a generalized equation. We establish conditions for strong metric subregularity and strong metric regularity of the corresponding set-valued mappings. This allows us to extend classical convergence of Newton and quasi-Newton methods to the broader class of nonfinite valued piecewise linear-quadratic convex-composite optimization problems. In particular, we establish local quadratic convergence of the Newton method under conditions that parallel those in nonlinear programming. 
    more » « less
  5. null (Ed.)
    In distributed second order optimization, a standard strategy is to average many local estimates, each of which is based on a small sketch or batch of the data. However, the local estimates on each machine are typically biased, relative to the full solution on all of the data, and this can limit the effectiveness of averaging. Here, we introduce a new technique for debiasing the local estimates, which leads to both theoretical and empirical improvements in the convergence rate of distributed second order methods. Our technique has two novel components: (1) modifying standard sketching techniques to obtain what we call a surrogate sketch; and (2) carefully scaling the global regularization parameter for local computations. Our surrogate sketches are based on determinantal point processes, a family of distributions for which the bias of an estimate of the inverse Hessian can be computed exactly. Based on this computation, we show that when the objective being minimized is l2-regularized with parameter ! and individual machines are each given a sketch of size m, then to eliminate the bias, local estimates should be computed using a shrunk regularization parameter given by (See PDF), where d(See PDF) is the (See PDF)-effective dimension of the Hessian (or, for quadratic problems, the data matrix). 
    more » « less