skip to main content


This content will become publicly available on May 13, 2025

Title: Krylov Cubic Regularized Newton: A Subspace Second-Order Method with Dimension-Free Convergence Rate
Second-order optimization methods, such as cubic regularized Newton methods, are known for their rapid convergence rates; nevertheless, they become impractical in high-dimensional problems due to their substantial memory requirements and computational costs. One promising approach is to execute second order updates within a lower-dimensional subspace, giving rise to \textit{subspace second-order} methods. However, the majority of existing subspace second-order methods randomly select subspaces, consequently resulting in slower convergence rates depending on the problem's dimension $d$. In this paper, we introduce a novel subspace cubic regularized Newton method that achieves a dimension-independent global convergence rate of $\bigO\left(\frac{1}{mk}+\frac{1}{k^2}\right)$ for solving convex optimization problems. Here, $m$ represents the subspace dimension, which can be significantly smaller than $d$. Instead of adopting a random subspace, our primary innovation involves performing the cubic regularized Newton update within the \emph{Krylov subspace} associated with the Hessian and the gradient of the objective function. This result marks the first instance of a dimension-independent convergence rate for a subspace second-order method. Furthermore, when specific spectral conditions of the Hessian are met, our method recovers the convergence rate of a full-dimensional cubic regularized Newton method. Numerical experiments show our method converges faster than existing random subspace methods, especially for high-dimensional problems.  more » « less
Award ID(s):
2007668
NSF-PAR ID:
10526935
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
PMLR
Date Published:
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present an accelerated quasi-Newton proximal extragradient method for solving unconstrained smooth convex optimization problems. With access only to the gradients of the objective function, we prove that our method can achieve a convergence rate of ${\bigO}\bigl(\min\{\frac{1}{k^2}, \frac{\sqrt{d\log k}}{k^{2.5}}\}\bigr)$, where $d$ is the problem dimension and $k$ is the number of iterations. In particular, in the regime where $k = \bigO(d)$, our method matches the \emph{optimal rate} of $\mathcal{O}(\frac{1}{k^2})$ by Nesterov's accelerated gradient (NAG). Moreover, in the the regime where $k = \Omega(d \log d)$, it outperforms NAG and converges at a \emph{faster rate} of $\mathcal{O}\bigl(\frac{\sqrt{d\log k}}{k^{2.5}}\bigr)$. To the best of our knowledge, this result is the first to demonstrate a provable gain for a quasi-Newton-type method over NAG in the convex setting. To achieve such results, we build our method on a recent variant of the Monteiro-Svaiter acceleration framework and adopt an online learning perspective to update the Hessian approximation matrices, in which we relate the convergence rate of our method to the dynamic regret of a specific online convex optimization problem in the space of matrices. 
    more » « less
  2. We propose a stochastic variance-reduced cubic regularized Newton method (SVRC) for non-convex optimization. At the core of our algorithm is a novel semi-stochastic gradient along with a semi-stochastic Hessian, which are specifically designed for cubic regularization method. We show that our algorithm is guaranteed to converge to an $(\epsilon,\sqrt{\epsilon})$-approximate local minimum within $\tilde{O}(n^{4/5}/\epsilon^{3/2})$ second-order oracle calls, which outperforms the state-of-the-art cubic regularization algorithms including subsampled cubic regularization. Our work also sheds light on the application of variance reduction technique to high-order non-convex optimization methods. Thorough experiments on various non-convex optimization problems support our theory. 
    more » « less
  3. We propose a randomized algorithm with quadratic convergence rate for convex optimization problems with a self-concordant, composite, strongly convex objective function. Our method is based on performing an approximate Newton step using a random projection of the Hessian. Our first contribution is to show that, at each iteration, the embedding dimension (or sketch size) can be as small as the effective dimension of the Hessian matrix. Leveraging this novel fundamental result, we design an algorithm with a sketch size proportional to the effective dimension and which exhibits a quadratic rate of convergence. This result dramatically improves on the classical linear-quadratic convergence rates of state-of-theart sub-sampled Newton methods. However, in most practical cases, the effective dimension is not known beforehand, and this raises the question of how to pick a sketch size as small as the effective dimension while preserving a quadratic convergence rate. Our second and main contribution is thus to propose an adaptive sketch size algorithm with quadratic convergence rate and which does not require prior knowledge or estimation of the effective dimension: at each iteration, it starts with a small sketch size, and increases it until quadratic progress is achieved. Importantly, we show that the embedding dimension remains proportional to the effective dimension throughout the entire path and that our method achieves state-of-the-art computational complexity for solving convex optimization programs with a strongly convex component. We discuss and illustrate applications to linear and quadratic programming, as well as logistic regression and other generalized linear models. 
    more » « less
  4. Quasi-Newton algorithms are among the most popular iterative methods for solving unconstrained minimization problems, largely due to their favorable superlinear convergence property. However, existing results for these algorithms are limited as they provide either (i) a global convergence guarantee with an asymptotic superlinear convergence rate, or (ii) a local non-asymptotic superlinear rate for the case that the initial point and the initial Hessian approximation are chosen properly. In particular, no current analysis for quasi-Newton methods guarantees global convergence with an explicit superlinear convergence rate. In this paper, we close this gap and present the first globally convergent quasi-Newton method with an explicit non asymptotic superlinear convergence rate. Unlike classical quasi-Newton methods, we build our algorithm upon the hybrid proximal extragradient method and propose a novel online learning framework for updating the Hessian approximation matrices. Specifically, guided by the convergence analysis, we formulate the Hessian approximation update as an online convex optimization problem in the space of matrices, and we relate the bounded regret of the online problem to the superlinear convergence of our method. 
    more » « less
  5. We propose a continuous-time second-order optimization algorithm for solving unconstrained convex optimization problems with bounded Hessian. We show that this alternative algorithm has a comparable convergence rate to that of the continuous-time Newton–Raphson method, however structurally, it is amenable to a more efficient distributed implementation. We present a distributed implementation of our proposed optimization algorithm and prove its convergence via Lyapunov analysis. A numerical example demonstrates our results. 
    more » « less