skip to main content

Title: General Finite-Element Framework of the Virtual Fields Method in Nonlinear Elasticity
Abstract This paper presents a method to derive the virtual fields for identifying constitutive model parameters using the Virtual Fields Method (VFM). The VFM is an approach to identify unknown constitutive parameters using deformation fields measured across a given volume of interest. The general principle for solving identification problems with the VFM is first to derive parametric stress field, where the stress components at any point depend on the unknown constitutive parameters, across the volume of interest from the measured deformation fields. Applying the principle of virtual work to the parametric stress fields, one can write scalar equations of the unknown parameters and solve the obtained system of equations to deduce the values of unknown parameters. However, no rules have been proposed to select the virtual fields in identification problems related to nonlinear elasticity and there are multiple strategies possible that can yield different results. In this work, we propose a systematic, robust and automatic approach to reconstruct the systems of scalar equations with the VFM. This approach is well suited to finite-element implementation and can be applied to any problem provided that full-field deformation data are available across a volume of interest. We also successfully demonstrate the feasibility of more » the novel approach by multiple numerical examples. Potential applications of the proposed approach are numerous in biomedical engineering where imaging techniques are commonly used to observe soft tissues and where alterations of material properties are markers of diseased states. « less
Authors:
; ; ; ; ;
Award ID(s):
1727104
Publication Date:
NSF-PAR ID:
10310601
Journal Name:
Journal of Elasticity
Volume:
145
Issue:
1-2
ISSN:
0374-3535
Sponsoring Org:
National Science Foundation
More Like this
  1. Polycrystalline materials consist of grains (crystals) oriented at different angles resulting in a heterogeneous and anisotropic mechanical behavior at that micro-length scale. In this study, a novel method is proposed for the first time to determine the [Formula: see text] crystal orientations of grains in a [Formula: see text] domain, using solely [Formula: see text] deformation fields. The grain boundaries are assumed to be unknown and delineated from the reconstructed changes in the crystallographic orientation. Further, the constitutive equations that describe the mechanical behavior of the domain in [Formula: see text] under plane stress conditions are derived, assuming that themore »material is transversely isotropic in 3D. Finite element based algorithms are utilized to discretize the inverse problem. The in-house written inverse problem solver is coupled with Matlab-based optimization scripts to solve for the mechanical property distributions. The performance of this method is tested at different noise levels with synthetic displacements that were used as measured data. The reconstructions deteriorate as the noise level is increased. This work presents a first milestone in the verification of this novel technology with synthetic data.« less
  2. In large-scale wireless sensor networks, sensor-processor elements (nodes) are densely deployed to monitor the environment; consequently, their observations form a random field that is highly correlated in space.We consider a fusion sensor-network architecture where, due to the bandwidth and energy constraints, the nodes transmit quantized data to a fusion center. The fusion center provides feedback by broadcasting summary information to the nodes. In addition to saving energy, this feedback ensures reliability and robustness to node and fusion-center failures. We assume that the sensor observations follow a linear-regression model with known spatial covariances between any two locations within a region ofmore »interest. We propose a Bayesian framework for adaptive quantization, fusion-center feedback, and estimation of the random field and its parameters. We also derive a simple suboptimal scheme for estimating the unknown parameters, apply our estimation approach to the no-feedback scenario, discuss field prediction at arbitrary locations within the region of interest, and present numerical examples demonstrating the performance of the proposed methods.« less
  3. A LiDAR Statistical Barnes Objective Analysis (LiSBOA) for the optimal design of lidar scans and retrieval of the velocity statistical moments is proposed. LiSBOA represents an adaptation of the classical Barnes scheme for the statistical analysis of unstructured experimental data in N-dimensional space, and it is a suitable technique for the evaluation over a structured Cartesian grid of the statistics of scalar fields sampled through scanning lidars. LiSBOA is validated and characterized via a Monte Carlo approach applied to a synthetic velocity field. This revisited theoretical framework for the Barnes objective analysis enables the formulation of guidelines for the optimalmore »design of lidar experiments and efficient application of LiSBOA for the postprocessing of lidar measurements. The optimal design of lidar scans is formulated as a two-cost-function optimization problem, including the minimization of the percentage of the measurement volume not sampled with adequate spatial resolution and the minimization of the error on the mean of the velocity field. The optimal design of the lidar scans also guides the selection of the smoothing parameter and the total number of iterations to use for the Barnes scheme. LiSBOA is assessed against a numerical data set generated using the virtual lidar technique applied to the data obtained from a large eddy simulation (LES). The optimal sampling parameters for a scanning Doppler pulsed wind lidar are retrieved through LiSBOA, and then the estimated statistics are compared with those of the original LES data set, showing a maximum error of about 4 % for both mean velocity and turbulence intensity.« less
  4. Abstract. A LiDAR Statistical Barnes Objective Analysis (LiSBOA) for the optimal design of lidar scans and retrieval of the velocity statistical moments is proposed. LiSBOA represents an adaptation of the classical Barnes scheme for the statistical analysis of unstructured experimental data in N-dimensional space, and it is a suitable technique for the evaluation over a structured Cartesian grid of the statistics of scalar fields sampled through scanning lidars. LiSBOA is validated and characterized via a Monte Carlo approach applied to a synthetic velocity field. This revisited theoretical framework for the Barnes objective analysis enables the formulation of guidelines for themore »optimal design of lidar experiments and efficient application of LiSBOA for the postprocessing of lidar measurements. The optimal design of lidar scans is formulated as a two-cost-function optimization problem, including the minimization of the percentage of the measurement volume not sampled with adequate spatial resolution and the minimization of the error on the mean of the velocity field. The optimal design of the lidar scans also guides the selection of the smoothing parameter and the total number of iterations to use for the Barnes scheme. LiSBOA is assessed against a numerical data set generated using the virtual lidar technique applied to the data obtained from a large eddy simulation (LES). The optimal sampling parameters for a scanning Doppler pulsed wind lidar are retrieved through LiSBOA, and then the estimated statistics are compared with those of the original LES data set, showing a maximum error of about 4 % for both mean velocity and turbulence intensity.« less
  5. Abstract Adaptive mesh refinement (AMR) is the art of solving PDEs on a mesh hierarchy with increasing mesh refinement at each level of the hierarchy. Accurate treatment on AMR hierarchies requires accurate prolongation of the solution from a coarse mesh to a newly defined finer mesh. For scalar variables, suitably high-order finite volume WENO methods can carry out such a prolongation. However, classes of PDEs, such as computational electrodynamics (CED) and magnetohydrodynamics (MHD), require that vector fields preserve a divergence constraint. The primal variables in such schemes consist of normal components of the vector field that are collocated at themore »faces of the mesh. As a result, the reconstruction and prolongation strategies for divergence constraint-preserving vector fields are necessarily more intricate. In this paper we present a fourth-order divergence constraint-preserving prolongation strategy that is analytically exact. Extension to higher orders using analytically exact methods is very challenging. To overcome that challenge, a novel WENO-like reconstruction strategy is invented that matches the moments of the vector field in the faces, where the vector field components are collocated. This approach is almost divergence constraint-preserving, therefore, we call it WENO-ADP. To make it exactly divergence constraint-preserving, a touch-up procedure is developed that is based on a constrained least squares (CLSQ) method for restoring the divergence constraint up to machine accuracy. With the touch-up, it is called WENO-ADPT. It is shown that refinement ratios of two and higher can be accommodated. An item of broader interest in this work is that we have also been able to invent very efficient finite volume WENO methods, where the coefficients are very easily obtained and the multidimensional smoothness indicators can be expressed as perfect squares. We demonstrate that the divergence constraint-preserving strategy works at several high orders for divergence-free vector fields as well as vector fields, where the divergence of the vector field has to match a charge density and its higher moments. We also show that our methods overcome the late time instability that has been known to plague adaptive computations in CED.« less