skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: General Finite-Element Framework of the Virtual Fields Method in Nonlinear Elasticity
Abstract This paper presents a method to derive the virtual fields for identifying constitutive model parameters using the Virtual Fields Method (VFM). The VFM is an approach to identify unknown constitutive parameters using deformation fields measured across a given volume of interest. The general principle for solving identification problems with the VFM is first to derive parametric stress field, where the stress components at any point depend on the unknown constitutive parameters, across the volume of interest from the measured deformation fields. Applying the principle of virtual work to the parametric stress fields, one can write scalar equations of the unknown parameters and solve the obtained system of equations to deduce the values of unknown parameters. However, no rules have been proposed to select the virtual fields in identification problems related to nonlinear elasticity and there are multiple strategies possible that can yield different results. In this work, we propose a systematic, robust and automatic approach to reconstruct the systems of scalar equations with the VFM. This approach is well suited to finite-element implementation and can be applied to any problem provided that full-field deformation data are available across a volume of interest. We also successfully demonstrate the feasibility of the novel approach by multiple numerical examples. Potential applications of the proposed approach are numerous in biomedical engineering where imaging techniques are commonly used to observe soft tissues and where alterations of material properties are markers of diseased states.  more » « less
Award ID(s):
1727104
PAR ID:
10310601
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Elasticity
Volume:
145
Issue:
1-2
ISSN:
0374-3535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polycrystalline materials consist of grains (crystals) oriented at different angles resulting in a heterogeneous and anisotropic mechanical behavior at that micro-length scale. In this study, a novel method is proposed for the first time to determine the [Formula: see text] crystal orientations of grains in a [Formula: see text] domain, using solely [Formula: see text] deformation fields. The grain boundaries are assumed to be unknown and delineated from the reconstructed changes in the crystallographic orientation. Further, the constitutive equations that describe the mechanical behavior of the domain in [Formula: see text] under plane stress conditions are derived, assuming that the material is transversely isotropic in 3D. Finite element based algorithms are utilized to discretize the inverse problem. The in-house written inverse problem solver is coupled with Matlab-based optimization scripts to solve for the mechanical property distributions. The performance of this method is tested at different noise levels with synthetic displacements that were used as measured data. The reconstructions deteriorate as the noise level is increased. This work presents a first milestone in the verification of this novel technology with synthetic data. 
    more » « less
  2. Most variational principles in classical mechanics are based on the principle of least action, which is only a stationary principle. In contrast, Gauss' principle of least constraint is a true minimum principle. In this paper, we apply Gauss' principle to the mechanics of incompressible flows, thereby discovering the fundamental quantity that Nature minimizes in most flows encountered in everyday life. We show that the magnitude of the pressure gradient over the domain is minimum at every instant of time. We call it the principle of minimum pressure gradient (PMPG). It turns a fluid mechanics problem into a minimization one. We demonstrate this intriguing property by solving four classical problems in fluid mechanics using the PMPG without resorting to Navier–Stokes' equation. In some cases, the PMPG minimization approach is not any more efficient than solving Navier–Stokes'. However, in other cases, it is more insightful and efficient. In fact, the inviscid version of the PMPG allowed solving the long-standing problem of the aerohydrodynamic lift over smooth cylindrical shapes where Euler's equation fails to provide a unique answer. The PMPG transcends Navier–Stokes' equations in its applicability to non-Newtonian fluids with arbitrary constitutive relations and fluids subject to arbitrary forcing (e.g., electromagnetic). 
    more » « less
  3. Modeling fluid flow and transport in heterogeneous systems is often challenged by unknown parameters that vary in space. In inverse modeling, measurement data are used to estimate these parameters. Due to the spatial variability of these unknown parameters in heterogeneous systems (e.g., permeability or diffusivity), the inverse problem is ill-posed and infinite solutions are possible. Physics-informed neural networks (PINN) have become a popular approach for solving inverse problems. However, in inverse problems in heterogeneous systems, PINN can be sensitive to hyperparameters and can produce unrealistic patterns. Motivated by the concept of ensemble learning and variance reduction in machine learning, we propose an ensemble PINN (ePINN) approach where an ensemble of parallel neural networks is used and each sub-network is initialized with a meaningful pattern of the unknown parameter. Subsequently, these parallel networks provide a basis that is fed into a main neural network that is trained using PINN. It is shown that an appropriately selected set of patterns can guide PINN in producing more realistic results that are relevant to the problem of interest. To assess the accuracy of this approach, inverse transport problems involving unknown heat conductivity, porous media permeability, and velocity vector fields were studied. The proposed ePINN approach was shown to increase the accuracy in inverse problems and mitigate the challenges associated with non-uniqueness. 
    more » « less
  4. Abstract A multiscale topology optimization framework for stress-constrained design is presented. Spatially varying microstructures are distributed in the macroscale where their material properties are estimated using a neural network surrogate model for homogenized constitutive relations. Meanwhile, the local stress state of each microstructure is evaluated with another neural network trained to emulate second-order homogenization. This combination of two surrogate models — one for effective properties, one for local stress evaluation — is shown to accurately and efficiently predict relevant stress values in structures with spatially varying microstructures. An augmented lagrangian approach to stress-constrained optimization is then implemented to minimize the volume of multiscale structures subjected to stress constraints in each microstructure. Several examples show that the approach can produce designs with varied microarchitectures that respect local stress constraints. As expected, the distributed microstructures cannot surpass density-based topology optimization designs in canonical volume minimization problems. Despite this, the stress-constrained design of hierarchical structures remains an important component in the development of multiphysics and multifunctional design. This work presents an effective approach to multiscale optimization where a machine learning approach to local analysis has increased the information exchange between micro- and macroscales. 
    more » « less
  5. Unlike traditional structural materials, soft solids can often sustain very large deformation before failure, and many exhibit nonlinear viscoelastic behavior. Modeling nonlinear viscoelasticity is a challenging problem for a number of reasons. In particular, a large number of material parameters are needed to capture material response and validation of models can be hindered by limited amounts of experimental data available. We have developed a Gaussian Process (GP) approach to determine the material parameters of a constitutive model describing the mechanical behavior of a soft, viscoelastic PVA hydrogel. A large number of stress histories generated by the constitutive model constitute the training sets. The low-rank representations of stress histories by Singular Value Decomposition (SVD) are taken to be random variables which can be modeled via Gaussian Processes with respect to the material parameters of the constitutive model. We obtain optimal material parameters by minimizing an objective function over the input set. We find that there are many good sets of parameters. Further the process reveals relationships between the model parameters. Results so far show that GP has great potential in fitting constitutive models. 
    more » « less