skip to main content


Title: Everything in Modulation: Neuromodulators as Keys to Understanding Communication Dynamics
Synopsis Across the animal kingdom, the ability to produce communication signals appropriate to social encounters is essential, but how these behaviors are selected and adjusted in a context-dependent manner are poorly understood. This question can be addressed on many levels, including sensory processing by peripheral organs and the central nervous system, sensorimotor integration in decision-making brain regions, and motor circuit activation and modulation. Because neuromodulator systems act at each of these levels, they are a useful lens through which to explore the mechanisms underlying complex patterns of communication. It has been clear for decades that understanding the logic of input–output decision making by the nervous system requires far more than simply identifying the connections linking sensory organs to motor circuits; this is due in part to the fact that neuromodulators can promote distinct and temporally dynamic responses to similar signals. We focus on the vocal circuit dynamics of Xenopus frogs, and describe complementary examples from diverse vertebrate communication systems. While much remains to be discovered about how neuromodulators direct flexibility in communication behaviors, these examples illustrate that several neuromodulators can act upon the same circuit at multiple levels of control, and that the functional consequence of neuromodulation can depend on species-specific factors as well as dynamic organismal characteristics like internal state.  more » « less
Award ID(s):
2010768 1755423
PAR ID:
10310732
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
61
Issue:
3
ISSN:
1540-7063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The limited information about how descending inputs from the brain and sensory inputs from the periphery use spinal cord interneurons (INs) is a major barrier to understanding how these inputs may contribute to motor functions under normal and pathologic conditions. Commissural interneurons (CINs) are a heterogeneous population of spinal INs that has been implicated in crossed motor responses and bilateral motor coordination (ability to use the right and left side of the body in a coordinated manner) and, therefore, are likely involved in many types of movement (e.g., dynamic posture stabilization, jumping, kicking, walking). In this study, we incorporate mouse genetics, anatomy, electrophysiology, and single-cell calcium imaging to investigate how a subset of CINs, those with descending axons called dCINs, are recruited by descending reticulospinal and segmental sensory signals independently and in combination. We focus on two groups of dCINs set apart by their principal neurotransmitter (glutamate and GABA) and identified as VGluT2+ dCINs and GAD2+ dCINs. We show that VGluT2+ and GAD2+ dCINs are both extensively recruited by reticulospinal and sensory input alone but that VGluT2+ and GAD2+ dCINs integrate these inputs differently. Critically, we find that when recruitment depends on the combined action of reticulospinal and sensory inputs (subthreshold inputs), VGluT2+ dCINs, but not GAD2+ dCINs, are recruited. This difference in the integrative capacity of VGluT2+ and GAD2+ dCINs represents a circuit mechanism that the reticulospinal and segmental sensory systems may avail themselves of to regulate motor behaviors both normally and after injury.

    SIGNIFICANCE STATEMENTThe way supraspinal and peripheral sensory inputs use spinal cord interneurons is fundamental to defining how motor functions are supported both in health and disease. This study, which focuses on dCINs, a heterogeneous population of spinal interneurons critical for crossed motor responses and bilateral motor coordination, shows that both glutamatergic (excitatory) and GABAergic (inhibitory) dCINs can be recruited by supraspinal (reticulospinal) or peripheral sensory inputs. Additionally, the study demonstrates that in conditions where the recruitment of dCINs depends on the combined action of reticulospinal and sensory inputs, only excitatory dCINs are recruited. The study uncovers a circuit mechanism that the reticulospinal and segmental sensory systems may avail themselves of to regulate motor behaviors both normally and after injury.

     
    more » « less
  2. Latham, Peter E. (Ed.)
    Sensory inputs in nervous systems are often encoded at the millisecond scale in a precise spike timing code. There is now growing evidence in behaviors ranging from slow breathing to rapid flight for the prevalence of precise timing encoding in motor systems. Despite this, we largely do not know at what scale timing matters in these circuits due to the difficulty of recording a complete set of spike-resolved motor signals and assessing spike timing precision for encoding continuous motor signals. We also do not know if the precision scale varies depending on the functional role of different motor units. We introduce a method to estimate spike timing precision in motor circuits using continuous MI estimation at increasing levels of added uniform noise. This method can assess spike timing precision at fine scales for encoding rich motor output variation. We demonstrate the advantages of this approach compared to a previously established discrete information theoretic method of assessing spike timing precision. We use this method to analyze the precision in a nearly complete, spike resolved recording of the 10 primary wing muscles control flight in an agile hawk moth, Manduca sexta . Tethered moths visually tracked a robotic flower producing a range of turning (yaw) torques. We know that all 10 muscles in this motor program encode the majority of information about yaw torque in spike timings, but we do not know whether individual muscles encode motor information at different levels of precision. We demonstrate that the scale of temporal precision in all motor units in this insect flight circuit is at the sub-millisecond or millisecond-scale, with variation in precision scale present between muscle types. This method can be applied broadly to estimate spike timing precision in sensory and motor circuits in both invertebrates and vertebrates. 
    more » « less
  3. ABSTRACT

    The integration of sensory information is required to maintain body posture and to generate robust yet flexible locomotion through unpredictable environments. To anticipate required adaptations in limb posture and enable compensation of sudden perturbations, an animal's nervous system assembles external (exteroception) and internal (proprioception) cues. Coherent neuronal representations of the proprioceptive context of the body and the appendages arise from the concerted action of multiple sense organs monitoring body kinetics and kinematics. This multimodal proprioceptive information, together with exteroceptive signals and brain-derived descending motor commands, converges onto premotor networks – i.e. the local neuronal circuitry controlling motor output and movements – within the ventral nerve cord (VNC), the insect equivalent of the vertebrate spinal cord. This Review summarizes existing knowledge and recent advances in understanding how local premotor networks in the VNC use convergent information to generate contextually appropriate activity, focusing on the example of posture control. We compare the role and advantages of distributed sensory processing over dedicated neuronal pathways, and the challenges of multimodal integration in distributed networks. We discuss how the gain of distributed networks may be tuned to enable the behavioral repertoire of these systems, and argue that insect premotor networks might compensate for their limited neuronal population size by, in comparison to vertebrate networks, relying more heavily on the specificity of their connections. At a time in which connectomics and physiological recording techniques enable anatomical and functional circuit dissection at an unprecedented resolution, insect motor systems offer unique opportunities to identify the mechanisms underlying multimodal integration for flexible motor control.

     
    more » « less
  4. Motor circuits represent the main output of the central nervous system and produce dynamic behaviors ranging from relatively simple rhythmic activities like swimming in fish and breathing in mammals to highly sophisticated dexterous movements in humans. Despite decades of research, the development and function of motor circuits remain poorly understood. Breakthroughs in the field recently provided new tools and tractable model systems that set the stage to discover the molecular mechanisms and circuit logic underlying motor control. Here, we describe recent advances from both vertebrate (mouse, frog) and invertebrate (nematode, fruit fly) systems on cellular and molecular mechanisms that enable motor circuits to develop and function and highlight conserved and divergent mechanisms necessary for motor circuit development.

     
    more » « less
  5. Natural behaviors are a coordinated symphony of motor acts that drive reafferent (self-induced) sensory activation. Individual sensors cannot disambiguate exafferent (externally induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to carry out adaptive behaviors through corollary discharge circuits (CDCs), which provide predictive motor signals from motor pathways to sensory processing and other motor pathways. Yet, how CDCs comprehensively integrate into the nervous system remains unexplored. Here, we use connectomics, neuroanatomical, physiological, and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs) in Drosophila, which function as a predictive CDC in other insects. Both AHN pairs receive input primarily from a partially overlapping population of descending neurons, especially from DNg02, which controls wing motor output. Using Ca2+ imaging and behavioral recordings, we show that AHN activation is correlated to flight behavior and precedes wing motion. Optogenetic activation of DNg02 is sufficient to activate AHNs, indicating that AHNs are activated by descending commands in advance of behavior and not as a consequence of sensory input. Downstream, each AHN pair targets predominantly non-overlapping networks, including those that process visual, auditory, and mechanosensory information, as well as networks controlling wing, haltere, and leg sensorimotor control. These results support the conclusion that the AHNs provide a predictive motor signal about wing motor state to mostly non-overlapping sensory and motor networks. Future work will determine how AHN signaling is driven by other descending neurons and interpreted by AHN downstream targets to maintain adaptive sensorimotor performance. 
    more » « less