skip to main content


Title: Synthesis of telechelic polyolefins
Telechelic polymers, polymers with two reactive end-groups, are sought after for their role in synthesizing macromolecules with complex structures such as multiblock copolymers and graft polymers. Many strategies for the synthesis of telechelic polymers from vinyl monomers using controlled radical polymerizations and anionic polymerizations exist. However, polyolefins—which account for the major fraction of polymer production—are not easily synthesized with two reactive end-groups. This difficulty is related to the sensitivity of olefin polymerization catalysts and their propensity for intramolecular chain transfer reactions. As a result, the most common strategies to access telechelic polyethylene and polypropylene (the two major polyolefins) do not rely on the insertion polymerization of ethylene nor propylene but rather on the polymerization of dienes or cyclic olefins. Nonetheless, recent advances in insertion polymerization and post-polymerization functionalization have resulted in the emergence of novel synthetic methods to access telechelic polyolefins. We here present a comprehensive review of all of these strategies to synthesize telechelic polyolefins.  more » « less
Award ID(s):
1706911
NSF-PAR ID:
10310811
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
12
Issue:
36
ISSN:
1759-9954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Transforming renewable resources into functional and degradable polymers is driven by the ever‐increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence‐defined copolymers from one‐pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers’ performances. Among many polymerization strategies, ring‐opening (co)polymerization of cyclic monomers enables efficient access to degradable polymers with high control on molecular weights and molecular weight distributions. Herein, we highlight recent advances in achieving one‐pot, sequence‐controlled polymerizations of cyclic monomer mixtures using a single catalytic system that combines multiple catalytic cycles. The scopes of cyclic monomers, catalysts, and polymerization mechanisms are presented for this type of sequence‐controlled ring‐opening copolymerization.

     
    more » « less
  2. Abstract

    Practical synthesis of polyolefin–polyvinyl block copolymers remains a challenge for transition‐metal catalyzed polymerizations. Common approaches functionalize polyolefins for post‐radical polymerization via insertion methods, yet sacrifice the livingness of the olefin polymerization. This work identifies an orthogonal radical/spin coupling technique which affords tandem living insertion and controlled radical polymerization. The broad tolerance of this coupling technique has been demonstrated for diverse radical/spin traps such as 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide (TIPNO), 1‐oxyl‐(2,2,6,6‐tetramethylpiperidine) ‐4‐yl‐α‐bromoisobutyrate (TEMPO‐Br), andN‐tert‐butyl‐α‐phenylnitrone (PBN). Subsequent controlled radical polymerization is demonstrated with nitroxide‐mediated polymerization (NMP) and atom transfer radical polymerization (ATRP), yielding polyolefin–polyvinyl di‐ and triblock copolymers (Đ<1.3) with acrylic, vinylic and styrenic segments. These findings highlight radical trapping as an approach to expand the scope of polyolefin‐functionalization techniques to access polyolefin macroinitiators.

     
    more » « less
  3. Abstract

    Practical synthesis of polyolefin–polyvinyl block copolymers remains a challenge for transition‐metal catalyzed polymerizations. Common approaches functionalize polyolefins for post‐radical polymerization via insertion methods, yet sacrifice the livingness of the olefin polymerization. This work identifies an orthogonal radical/spin coupling technique which affords tandem living insertion and controlled radical polymerization. The broad tolerance of this coupling technique has been demonstrated for diverse radical/spin traps such as 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide (TIPNO), 1‐oxyl‐(2,2,6,6‐tetramethylpiperidine) ‐4‐yl‐α‐bromoisobutyrate (TEMPO‐Br), andN‐tert‐butyl‐α‐phenylnitrone (PBN). Subsequent controlled radical polymerization is demonstrated with nitroxide‐mediated polymerization (NMP) and atom transfer radical polymerization (ATRP), yielding polyolefin–polyvinyl di‐ and triblock copolymers (Đ<1.3) with acrylic, vinylic and styrenic segments. These findings highlight radical trapping as an approach to expand the scope of polyolefin‐functionalization techniques to access polyolefin macroinitiators.

     
    more » « less
  4. Recent experimental and theoretical work has shown that sticker clustering can be used to enhance properties such as toughness and creep resistance of polymer networks. While it is clear that the changes in properties are related to a change in network topology, the mechanistic relationship is still not well understood. In this work, the effect of sticker clustering was investigated by comparing the dynamics of random copolymers with those where the stickers are clustered at the ends of the chain in the unentangled regime using both linear mechanics and diffusion measurements. Copolymers of N , N -dimethyl acrylamide (DMA) and pendant histidine groups were synthesized using reversible addition–fragmentation chain transfer (RAFT) polymerization. The clustered polymers were synthesized using a bifunctional RAFT agent, such that the midblock consisted of PDMA and the two end blocks were random copolymers of DMA and the histidine-functionalized monomer. Upon addition of Ni ions, transient metal-coordinate crosslinks are formed as histidine–Ni complexes. Combined studies of rheology, neutron scattering and self-diffusion measurements using forced Rayleigh scattering revealed changes to the network topology and stress relaxation modes. The network topology is proposed to consist of aggregates of the histidine–Ni complexes bridged by the non-associative midblock. Therefore, stress relaxation requires the cooperative dissociation of multiple bonds, resulting in increased relaxation times. The increased relaxation times, however, were accompanied by faster diffusion. This is attributed to the presence of defects such as elastically inactive chain loops. This study demonstrates that the effects of cooperative sticker dissociation can be observed even in the presence of a significant fraction of loop defects which are known to alter the nonlinear properties of conventional telechelic polymers. 
    more » « less
  5. Abstract

    Heterocyclic hypervalent (HV) iodine(III) compounds with ICl bonds and various substituents at the N atom are synthesized and found to be very efficient chain transfer agents in the polymerization of styrene with transfer coefficients exceeding that of CCl4by 2–3 orders of magnitude, depending on the structure. The chain transfer rate coefficients are also determined. Due to the presence of thermally labile HV bonds, the compounds degrade homolytically upon heating and can initiate radical polymerization. For instance, 1‐chloro‐2‐hexyl‐1,2‐benziodazol‐3(2H)‐one, is used in the polymerization of styrene, which yields low molecular weight polymers with alkyl chloride groups at the α‐ (initiation) and the ω‐chain ends (transfer). Chain‐end functionalization reactions with azide and chain extension under low‐catalyst‐concentration atom transfer radical polymerization (ATRP) conditions of the prepared telechelic polymers are carried out. The same initiator/chain transfer agent is successfully employed in the synthesis of highly branched polymers with multiple alkyl chloride‐type chain ends when added to mixtures of styrene and 1,4‐divinylbenzene containing 10–80 mol% of the divinyl crosslinker, or even pure crosslinker. In all cases, soluble hyperbranched polymers are obtained up to moderate monomer conversions. The effects of crosslinker and HV iodine(III) compound concentrations on the polymerization outcome are studied systematically.

     
    more » « less