skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Global Minimizers of Real Robust Phase Retrieval With Sparse Noise
We study a class of real robust phase retrieval problems under a Gaussian assumption on the coding matrix when the received signal is sparsely corrupted by noise. The goal is to establish conditions on the sparsity under which the input vector can be exactly recovered. The recovery problem is formulated as residual minimization in the l1-norm. The main contribution is a robust phase retrieval counterpart to the seminal paper by Candes and Tao on compressed sensing (l1 regression) [``Decoding by linear programming''. IEEE Transactions on Information Theory, 51(12):4203–4215, 2005]. The analysis depends on a key new property of the coding matrix called the Absolute Range Property (ARP) which is the analogue to the Null Space Property (NSP) in compressed sensing. When the residuals are computed using squared magnitudes, we show that ARP follows from a standard Restricted Isometry Property (RIP). However, when the residuals are computed using absolute magnitudes, a different kind of RIP or growth property is required. We conclude by showing that the robust phase retrieval objectives are sharp with respect to their minimizers with high probability.  more » « less
Award ID(s):
1908890
PAR ID:
10310854
Author(s) / Creator(s):
; ;
Editor(s):
Veeravalli, Venu
Publisher / Repository:
The Institute of Electrical and Electronics Engineers, Inc.
Date Published:
Journal Name:
IEEE Transactions on Information Theory
Volume:
67
Issue:
3
ISSN:
0018-9448
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The matrix sensing problem is an important low-rank optimization problem that has found a wide range of applications, such as matrix completion, phase synchornization/retrieval, robust principal component analysis (PCA), and power system state estimation. In this work, we focus on the general matrix sensing problem with linear measurements that are corrupted by random noise. We investigate the scenario where the search rank r is equal to the true rank [Formula: see text] of the unknown ground truth (the exact parametrized case), as well as the scenario where r is greater than [Formula: see text] (the overparametrized case). We quantify the role of the restricted isometry property (RIP) in shaping the landscape of the nonconvex factorized formulation and assisting with the success of local search algorithms. First, we develop a global guarantee on the maximum distance between an arbitrary local minimizer of the nonconvex problem and the ground truth under the assumption that the RIP constant is smaller than [Formula: see text]. We then present a local guarantee for problems with an arbitrary RIP constant, which states that any local minimizer is either considerably close to the ground truth or far away from it. More importantly, we prove that this noisy, overparametrized problem exhibits the strict saddle property, which leads to the global convergence of perturbed gradient descent algorithm in polynomial time. The results of this work provide a comprehensive understanding of the geometric landscape of the matrix sensing problem in the noisy and overparametrized regime. Funding: This work was supported by grants from the National Science Foundation, Office of Naval Research, Air Force Office of Scientific Research, and Army Research Office. 
    more » « less
  2. Low-rank matrix recovery is a fundamental problem in machine learning with numerous applications. In practice, the problem can be solved by convex optimization namely nuclear norm minimization, or by non-convex optimization as it is well-known that for low-rank matrix problems like matrix sensing and matrix completion, all local optima of the natural non-convex objectives are also globally optimal under certain ideal assumptions. In this paper, we study new approaches for matrix sensing in a semi-random model where an adversary can add any number of arbitrary sensing matrices. More precisely, the problem is to recover a low-rank matrix $$X^\star$$ from linear measurements $$b_i = \langle A_i, X^\star \rangle$$, where an unknown subset of the sensing matrices satisfies the Restricted Isometry Property (RIP) and the rest of the $$A_i$$'s are chosen adversarially. It is known that in the semi-random model, existing non-convex objectives can have bad local optima. To fix this, we present a descent-style algorithm that provably recovers the ground-truth matrix $$X^\star$$. For the closely-related problem of semi-random matrix completion, prior work [CG18] showed that all bad local optima can be eliminated by reweighting the input data. However, the analogous approach for matrix sensing requires reweighting a set of matrices to satisfy RIP, which is a condition that is NP-hard to check. Instead, we build on the framework proposed in [KLL$^+$23] for semi-random sparse linear regression, where the algorithm in each iteration reweights the input based on the current solution, and then takes a weighted gradient step that is guaranteed to work well locally. Our analysis crucially exploits the connection between sparsity in vector problems and low-rankness in matrix problems, which may have other applications in obtaining robust algorithms for sparse and low-rank problems. 
    more » « less
  3. We study the low-rank phase retrieval problem, where the objective is to recover a sequence of signals (typically images) given the magnitude of linear measurements of those signals. Existing solutions involve recovering a matrix constructed by vectorizing and stacking each image. These solutions model this matrix to be low-rank and leverage the low-rank property to decrease the sample complexity required for accurate recovery. However, when the number of available measurements is more limited, these low-rank matrix models can often fail. We propose an algorithm called Tucker-Structured Phase Retrieval (TSPR) that models the sequence of images as a tensor rather than a matrix that we factorize using the Tucker decomposition. This factorization reduces the number of parameters that need to be estimated, allowing for a more accurate reconstruction. We demonstrate the effectiveness of our approach on real video datasets under several different measurement models. 
    more » « less
  4. Abstract: Coded aperture X-ray computed tomography (CT) has the potential to revolutionize X-ray tomography systems in medical imaging and air and rail transit security - both areas of global importance. It allows either a reduced set of measurements in X-ray CT without degrada- tion in image reconstruction, or measure multiplexed X-rays to simplify the sensing geometry. Measurement reduction is of particular interest in medical imaging to reduce radiation, and airport security often imposes practical constraints leading to limited angle geometries. Coded aperture compressive X-ray CT places a coded aperture pattern in front of the X-ray source in order to obtain patterned projections onto a detector. Compressive sensing (CS) reconstruction algorithms are then used to recover the image. To date, the coded illumination patterns used in conventional CT systems have been random. This paper addresses the code optimization prob- lem for general tomography imaging based on the point spread function (PSF) of the system, which is used as a measure of the sensing matrix quality which connects to the restricted isom- etry property (RIP) and coherence of the sensing matrix. The methods presented are general, simple to use, and can be easily extended to other imaging systems. Simulations are presented where the peak signal to noise ratios (PSNR) of the reconstructed images using optimized coded apertures exhibit significant gain over those attained by random coded apertures. Additionally, results using real X-ray tomography projections are presented. 
    more » « less
  5. Abstract: Coded aperture X-ray computed tomography (CT) has the potential to revolutionize X-ray tomography systems in medical imaging and air and rail transit security - both areas of global importance. It allows either a reduced set of measurements in X-ray CT without degrada- tion in image reconstruction, or measure multiplexed X-rays to simplify the sensing geometry. Measurement reduction is of particular interest in medical imaging to reduce radiation, and airport security often imposes practical constraints leading to limited angle geometries. Coded aperture compressive X-ray CT places a coded aperture pattern in front of the X-ray source in order to obtain patterned projections onto a detector. Compressive sensing (CS) reconstruction algorithms are then used to recover the image. To date, the coded illumination patterns used in conventional CT systems have been random. This paper addresses the code optimization prob- lem for general tomography imaging based on the point spread function (PSF) of the system, which is used as a measure of the sensing matrix quality which connects to the restricted isom- etry property (RIP) and coherence of the sensing matrix. The methods presented are general, simple to use, and can be easily extended to other imaging systems. Simulations are presented where the peak signal to noise ratios (PSNR) of the reconstructed images using optimized coded apertures exhibit significant gain over those attained by random coded apertures. Additionally, results using real X-ray tomography projections are presented. 
    more » « less