skip to main content


Title: Aspects of irregular punctures via holography
A bstract We present new families of AdS 5 solutions in M-theory preserving 4d $$ \mathcal{N} $$ N = 2 supersymmetry. We perform a systematic analysis of holographic observables for these solutions, providing evidence for an interpretation in terms of 4d superconformal field theories (SCFTs) of Argyres-Douglas type, realized in class $$ \mathcal{S} $$ S via a sphere with one irregular, and one regular puncture. The gravity solutions exhibit internal M5-brane sources that correspond to the irregular puncture. For a family of solutions, we identify explicitly the class $$ \mathcal{S} $$ S puncture data and perform a detailed match, including Higgs branch operators. For other families we comment on proposed field theory duals, based on irregular punctures labeled by nested Young tableaux.  more » « less
Award ID(s):
2112699
NSF-PAR ID:
10422222
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We initiate a study of the holographic duals of a class of four-dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories that are engineered by wrapping M5-branes on a sphere with an irregular puncture. These notably include the strongly-coupled field theories of Argyres-Douglas type. Our solutions are obtained in 7d gauged supergravity, where they take the form of a warped product of AdS 5 and a “half-spindle.” The irregular puncture is modeled by a localized M5-brane source in the internal space of the gravity duals. Our solutions feature a realization of supersymmetry that is distinct from the usual topological twist, as well as an interesting Stückelberg mechanism involving the gauge field associated to a generator of the isometry algebra of the internal space. We check the proposed duality by computing the holographic central charge, the flavor symmetry central charge, and the dimensions of various supersymmetric probe M2-branes, and matching these with the dual Argyres-Douglas field theories. Furthermore, we compute the large- N ’t Hooft anomalies of the field theories using anomaly inflow methods in M-theory, and find perfect agreement with the proposed duality. 
    more » « less
  2. A bstract We analyse the spectrum of Kaluza-Klein excitations above three distinct families of $$ \mathcal{N} $$ N = 1 AdS 4 solutions of type IIB supergravity of typically non-geometric, S-fold type that have been recently found. For all three families, we provide the complete algebraic structure of their spectra, including the content of OSp(4|1) multiplets at all Kaluza-Klein levels and their charges under the residual symmetry groups. We also provide extensive results for the multiplet dimensions using new methods derived from exceptional field theory, including complete, analytic results for one of the families. All three spectra show periodicity in the moduli that label the corresponding family of solutions. Finally, the compactness of these moduli is verified in some cases at the level of the fully-fledged type IIB uplifted solutions. 
    more » « less
  3. A bstract A holographic duality was recently established between an $$ \mathcal{N} $$ N = 4 non-geometric AdS 4 solution of type IIB supergravity in the so-called S-fold class, and a three- dimensional conformal field theory (CFT) defined as a limit of $$ \mathcal{N} $$ N = 4 super-Yang-Mills at an interface. Using gauged supergravity, the $$ \mathcal{N} $$ N = 2 conformal manifold (CM) of this CFT has been assessed to be two-dimensional. Here, we holographically characterise the large- N operator spectrum of the marginally-deformed CFT. We do this by, firstly, providing the algebraic structure of the complete Kaluza-Klein (KK) spectrum on the associated two-parameter family of AdS4 solutions. And, secondly, by computing the $$ \mathcal{N} $$ N = 2 super-multiplet dimensions at the first few KK levels on a lattice in the CM, using new exceptional field theory techniques. Our KK analysis also allows us to establish that, at least at large N , this $$ \mathcal{N} $$ N = 2 CM is topologically a non-compact cylindrical Riemann surface bounded on only one side. 
    more » « less
  4. A bstract There is a well-known map from 4d $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) to 2d vertex operator algebras (VOAs). The 4d Schur index corresponds to the VOA vacuum character, and must be a solution with integral coefficients of a modular differential equation. This suggests a classification program for 4d $$ \mathcal{N} $$ N = 2 SCFTs that starts with modular differential equations and proceeds by imposing all known constraints that follow from the 4d → 2d map. This program becomes fully algorithmic once one specifies the order of the modular differential equation and the rank (complex dimension of the Coulomb branch) of the $$ \mathcal{N} $$ N = 2 theory. As a proof of concept, we apply the algorithm to the study of rank-two $$ \mathcal{N} $$ N = 2 SCFTs whose Schur indices satisfy a fourth-order untwisted modular differential equation. Scanning over a large number of putative cases, only 15 satisfy all of the constraints imposed by our algorithm, six of which correspond to known 4d SCFTs. More sophisticated constraints can be used to argue against the existence of the remaining nine cases. Altogether, this indicates that our knowledge of such rank-two SCFTs is surprisingly complete. 
    more » « less
  5. A bstract New techniques based on Exceptional Field Theory have recently allowed for the calculation of the Kaluza-Klein spectra of certain AdS 4 solutions of D = 11 and massive IIA supergravity. These are the solutions that consistently uplift on S 7 and S 6 from vacua of maximal four-dimensional supergravity with SO(8) and ISO(7) gaugings. In this paper, we provide an algorithmic procedure to compute the complete Kaluza-Klein spectrum of five such AdS 4 solutions, all of them $$ \mathcal{N} $$ N = 1, and give the first few Kaluza-Klein levels. These solutions preserve SO(3) and U(1) × U(1) internal symmetry in D = 11, and U(1) (two of them) and no continuous symmetry in type IIA. Together with previously discussed cases, our results exhaust the Kaluza-Klein spectra of known supersymmetric AdS 4 solutions in D = 11 and type IIA in the relevant class. 
    more » « less