skip to main content


Title: Embodying STEM: Learning at the intersection of Dance & STEM
This symposium addresses dance as a site for STEM learning. We present papers from five research projects that each sought to engage youth in embodied STEM learning using dance, exploring the power of creative embodied experiences and the body’s potential as an expressive tool and resource for learning. We show how dance activities expanded access to STEM and supported sense-making; how dancer and dance-making practices were leveraged to support computational thinking, modeling, and inquiry; and how moving bodies in creative ways helped to generate new insights by allowing for new perspectives. Across our work, we seek to understand the multiple, rich learning opportunities that emerge from working across the arts and sciences, dance and STEM. Together our research shows that attending to opportunities for STEM engagement and learning through dance practices can broaden access to learning and engagement in STEM for all.  more » « less
Award ID(s):
1742257
NSF-PAR ID:
10311172
Author(s) / Creator(s):
Editor(s):
de Vries, E.
Date Published:
Journal Name:
International Conference of the Learning Sciences
Volume:
1
Issue:
1
ISSN:
1573-4552
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Purpose The purpose of this paper is to explore the designed cultural ecology of a hip-hop and computational science, technology, engineering, and mathematics (STEM) camp and the ways in which that ecology contributed to culturally sustaining learning experiences for middle school youth. In using the principles of hip-hop as a CSP for design, the authors question how and what practices were supported or emerged and how they became resources for youth engagement in the space. Design/methodology/approach The overall methodology was design research. Through interpretive analysis, it uses an example of four Black girls participating in the camp as they build a computer-controlled DJ battle station. Findings Through a close examination of youth interactions in the designed environment – looking at their communication, spatial arrangements, choices and uses of materials and tools during collaborative project work – the authors show how a learning ecology, designed based on hip-hop and computational practices and shaped by the history and practices of the dance center where the program was held, provided access to ideational, relational, spatial and material resources that became relevant to learning through computational making. The authors also show how youth engagement in the hip-hop computational making learning ecology allowed practices to emerge that led to expansive learning experiences that redefine what it means to engage in computing. Research limitations/implications Implications include how such ecologies might arrange relations of ideas, tools, materials, space and people to support learning and positive identity development. Originality/value Supporting culturally sustaining computational STEM pedagogies, the article argues two original points in informal youth learning 1) an expanded definition of computing based on making grammars and the cultural practices of hip-hop, and 2) attention to cultural ecologies in designing and understanding computational STEM learning environments. 
    more » « less
  2. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  3. Abstract

    School science continues to alienate students identifying with nondominant, non‐western cultures, and learners of color, and considers science as an enterprise where success necessitates divorcing the self and corporeal body from ideas and the mind. Resisting the colonizing pedagogy of the mind–body divide, we aimed at creating pedagogical spaces and places in science classes that sustain equitable opportunities for engagement and meaning making where body and mind are enmeshed. In the context of a partnership between school‐ and university‐based educators and researchers, we explored how multimodal literacies cultivated through the performing arts, provide students from minoritized communities opportunities to both create knowledge and to position themselves as science experts and brilliant and creative meaning makers. Four theoretical perspectives (social semiotics and multimodality; dramatizing and the embodied mind; dismantling master narratives for minoritized peoples; and the relationship of knowledge production and identity construction) framed this multiple case study of classes of elementary and middle school students who made sense of and communicated science concepts and practices through embodied performances. The study provided evidence that embodied science representations afford students abundant opportunities to construct science knowledge and positionings that support engagement with science, whether performed on a small scale in classrooms, or for the whole school through a large‐scale science play. Embodied dramatizing led to opportunities for collective meaning making as student‐performers coordinated across various movements and modes in order to represent ideas. Multiple enactments of the same concept nurtured the development of multi‐dimensional scientific, sociocultural, and sociopolitical meanings. During embodiments, students positioned themselves and others in ways that allowed expanded science identities to become possible, intertwined with other salient identities. By treating children's bodies as sites of knowledge, imagination, and expertise, integrating performing arts and science has the potential to facilitate the development of connections among ideas and between self and ideas.

     
    more » « less
  4. Performing arts computing environments have received little attention in the educational sphere; yet, they offer opportunities for learners to validate their efforts, ideas, and skills through showcasing their work in a public-facing performance. In this work, we explore an out-of-school dance and computing educational program run by the organization, STEM From Dance. The organizational mission is to create an equitable learning experience for young women of color to engage with computing while exposing them to STEM careers. Through an analysis of eleven interviews with youth participants, instructors, and the executive director, we examine how the social, cultural, and political dimensions of the learning environment facilitate identity work in computing and dance. Our findings point to three primary activities used by the organization to promote equity: (1) providing psychological safety through a supportive community environment, (2) meaningfully engaging with learners’ social and cultural context through creative work with constructionist artifacts, and (3) actively promoting identity work as women of color in computing and STEM through both artifact work and community events. Applying the constructs of identity and psychological safety we explore the tensions and synergies of designing for equity in this performing arts and computing learning environment. We demonstrate how the seemingly contradictory elements of a high-stakes performance within a novice learning environment provides unique opportunities for supporting young women of color in computing, making them non-negotiable in the organization’s efforts to promote equity and inclusion. Our work illustrates how attending closely to the sociocultural dimensions in a constructionist learning environment provides lenses for navigating equity, identity work, and support for inclusive computing. 
    more » « less
  5. Roberts, K. (Ed.)
    Uniting social, emotional, and academic development is necessary to ensure all young people develop the thinking and feeling skills needed to succeed in a STEM-driven future. Scientific discoveries and technological innovations are transforming society, and while they may improve our quality of life, they also introduce social and ethical quandaries that young people must be equipped to navigate. For example, there are both opportunities and risks to using artificial intelligence, genetic engineering, and renewable/alternative energy sources. Although the public discourse supports bringing STEM and social-emotional development (SED) together, and demands evaluation and measurement of outcomes, integrated STEM+SED in educational research, practice, and policy is largely abstract and aspirational. Given that jobs of the future will be STEM-focused and will require SED/21st-century skills—such as working in diverse teams, solving complex problems, and persevering through failures—it will be important to implement and measure STEM+SED together at the teaching and learning levels. To move the field toward meaningful integration of STEM+SED practices and skills, we convened a National Science Foundation (NSF)–funded virtual conference: Mapping Connections Between STEM and Social-Emotional Development (SED) in Out-of-School Time (OST) Programs. This conference—attended by 49 stakeholders from STEM and SED research, policy, and practice—focused on identifying the measurable STEM+SED qualities and skills important for youth success and prioritized by both fields. From this conference emerged consensus for a common frame to explore STEM+SED integration—focusing on Active Engagement, Agency, Belonging, and Reflection—which we and our partners are using to generate knowledge, resources, and tools to advance the integration of STEM+SED in formal and informal learning environments. The preliminary findings and recommendations from this conference provide a starting point for areas to prioritize, explore, and set the stage for more rigorous, relevant, andhigh-quality research on integrated STEM+SED. We begin by telling the story of our conference, including our initial focus on OST, our choice of the term “SED,” and our approach. We then show how discoveries during and after the conference push this essential STEM+SED agenda forward in research and practice. We conclude with recommendations by and for researchers, practitioners, and policymakers to promote synergy between the fields of STEM and SED across all learning environments. 
    more » « less