Abstract Varroa destructor is an ectoparasitic mite of immature and adult honey bees that can transmit several single-stranded RNA viruses to its host. Varroa reproduce in brood cells, and mite populations increase as colonies produce brood in spring and summer. Mite numbers also can sharply rise, particularly in the fall, by the migration of varroa into hives on foragers. Colonies with high levels of varroa and viruses often die over the winter. Feeding colonies pollen might keep virus levels low and improve survival because of the positive effects of pollen on immunity and colony growth. We compared varroa and virus levels and overwinter survival in colonies with (fed) and without (unfed) supplemental pollen. We also measured the frequency of capturing foragers with mites (FWM) at colony entrances to determine its relationship to varroa and virus levels. Colonies fed supplemental pollen were larger than unfed colonies and survived longer. Varroa populations and levels of Deformed wing virus (DWV) rose throughout the season, and were similar between fed and unfed colonies. The growth of varroa populations was correlated with FWM in fed and unfed colonies, and significantly affected DWV levels. Increasing frequencies of FWM and the effects on varroa populations might reduce the positive influence of supplemental pollen on immune function. However, pollen feeding can stimulate colony growth and this can improve colony survival.
more »
« less
Signatures of adaptive decreased virulence of deformed wing virus in an isolated population of wild honeybees ( Apis mellifera )
Understanding the ecological and evolutionary processes that drive host–pathogen interactions is critical for combating epidemics and conserving species. TheVarroa destructormite and deformed wing virus (DWV) are two synergistic threats to Western honeybee (Apis mellifera) populations across the globe. Distinct honeybee populations have been found to self-sustain despiteVarroainfestations, including colonies within the Arnot Forest outside Ithaca, NY, USA. We hypothesized that in these bee populations, DWV has been selected to produce an avirulent infection phenotype, allowing for the persistence of both host and disease-causing agents. To investigate this, we assessed the titre of viruses in bees from the Arnot Forest and managed apiaries, and assessed genomic variation and virulence differences between DWV isolates. Across groups, we found viral abundance was similar, but DWV genotypes were distinct. We also found that infections with isolates from the Arnot Forest resulted in higher survival and lower rates of symptomatic deformed wings, compared to analogous isolates from managed colonies, providing preliminary evidence to support the hypothesis of adaptive decreased viral virulence. Overall, this multi-level investigation of virus genotype and phenotype indicates that host ecological context can be a significant driver of viral evolution and host–pathogen interactions in honeybees.
more »
« less
- Award ID(s):
- 1645331
- PAR ID:
- 10515233
- Publisher / Repository:
- The Royal Society
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 290
- Issue:
- 2009
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bee declines have been partly attributed to the impacts of invasive or emerging parasite outbreaks. For western honeybees,Apis mellifera, major losses are associated with the virus-vectoring mite,Varroa destructor. In response, beekeepers have focused breeding efforts aimed at conferring resistance to this key parasite. One method of many is survival-based beekeeping where colonies that survive despite significantVarroainfestations produce subsequent colonies. We argue that this ‘hands-off’ approach will not always lead toVarroaresistance evolving but rather tolerance. Tolerance minimizes host fitness costs of parasitism without reducing parasite abundance, whereas resistance either prevents parasitism outright or keeps parasitism intensity low. With clear epidemiological distinctions, and as honeybee disease dynamics impact other wild bees owing to shared pathogens, we discuss why tolerance outcomes in honeybee breeding have important implications for wider pollinator health. Crucially, we argue that unintentional selection for tolerance will not only lead to more spillover from honeybees but may also select for pathogens that are more virulent in wild bees leading to ‘tragedies of tolerance’. These tragedies can be avoided through successful breeding regimes that specifically select for lowVarroa. We emphasize how insights from evolutionary ecology can be applied in ecologically responsible honeybee management.more » « less
-
Abstract Identifying patterns of pathogen infection in natural systems is crucial to understanding mechanisms of host–pathogen interactions. In this study, we explored how Junonia coenia densovirus (JcDV) infection varies over space and time in populations of the Melissa blue butterfly (Lycaeides melissa: Lycaenidae) using two different host plants. Collections ofL. melissaadults from multiple populations and years, along with host plant tissue and community samples of arthropods found on host plants, were screened to determine JcDV prevalence and load. Additionally, we sampled at multiple time points within a singleL. melissaflight season to investigate intra‐annual variation in infection patterns.We found population‐specific variation in viral prevalence ofL. melissaacross collection years, with historical samples potentially having higher viral prevalence than contemporary samples, although host plant diet was not informative for these patterns. Patterns of infection across multiple generations within a flight season showed that late‐season samples had a higher proportion of JcDV‐positive individuals, suggesting an accumulation of virus over the season. Sequence data from a segment of the JcDV capsid gene showed a lack of viral genetic diversity betweenL. melissacollected from different localities, and little to no viral particles were found in the surrounding environment.Our discovery of temporal variation in infection suggests that multiple sampling efforts must be made when describing pathogen prevalence in multivoltine hosts. Our findings represent an important first step towards further exploration of the ecological factors mediating disease prevalence and host‐specific variability of infection in wild insect populations.more » « less
-
Pests and pathogens are a primary threat to honey bee(Apis mellifera)colonies worldwide. Selective breeding for honey bees resistant to these stressors represents a promising approach for mitigating their impacts on honey bee health. UBeeO is a novel hygiene-eliciting selection tool that has been used to identify honey bee colonies that are resistant to the parasitic miteVarroa destructor, and that are more likely to survive winter without beekeeper intervention. Here, we used three separate case studies to evaluate the effectiveness of the UBeeO assay in identifying colonies resist to disease. In three distinct geographic regions, we measured UBeeO scores along with the prevalence and load of key fungal and viral honey bee pathogens. We show that UBeeO can be used to identify colonies resistant to several other diseases, including the two fungal pathogens chalkbrood (Ascosphaera apis) andVairimorphaspp. (previouslyNosema), and multiple viruses, all critically important to honey bee health and survival. Furthermore, we identify potential UBeeO resistance thresholds for each pathogen, demonstrating an inverse relationship between pathogen virulence and the minimum UBeeO score associated with resistance to that pathogen. These findings suggest that UBeeO-guided selection strategies have the potential to significantly improve honey bee breeding programs by facilitating identification of resilient and pathogen-resistant colonies. The broad geographic range of our study sites underscores the robustness and applicability of UBeeO across varying environmental contexts. Since honey bees provide essential pollination services in both natural and agricultural ecosystems, this work has major implications for environmental health, crop productivity, and food security on a global scale.more » « less
-
Due to theoretical and practical applications in biomedical, environmental, and industrial microbiology, robust metrics for quantifying the virulence of pathogens is vital. For many virus–host systems, multiple virus strains propagate through host populations. Each strain may exhibit a different virulence level. Likewise, different hosts may manifest different levels of host resilience to infection by a given virus. Recent publications have assessed metrics for quantifying virulence (VR) from growth curve data. Regardless of the metric used, a feature that most methods have in common is focus on the exponential growth phase of virus–host interactions. Often ignored is mortality phase. Following a report introducing the Stacy–Ceballos Inhibition Index (ISC), a robust metric to quantify relative virulence (VR) between viruses, we have turned attention to quantifying relative resilience (RR) between hosts in single-virus/single-host (SVSH) experimental infections. Although resilience during viral infection impacts the entire host growth curve, RR has particular biological significance during the mortality phase. In this report, we argue that calculating RR using a modified ISC provides a robust metric for comparisons between SVSH infections. Wet lab data from fusellovirus infections in Sulfolobales, bacteriophage infections in Mycobacteriales, and simulated infected-host growth profiles form the basis for developing this metric, RR, for quantifying resilience.more » « less
An official website of the United States government

