skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Flag Manifold as a Tool for Analyzing and Comparing Sets of Data Sets
The shape and orientation of data clouds reflect variability in observations that can confound pattern recognition systems. Subspace methods, utilizing Grassmann manifolds, have been a great aid in dealing with such variability. However, this usefulness begins to falter when the data cloud contains sufficiently many outliers corresponding to stray elements from another class or when the number of data points is larger than the number of features. We illustrate how nested subspace methods, utilizing flag manifolds, can help to deal with such additional confounding factors. Flag manifolds, which are parameter spaces for nested sequences of subspaces, are a natural geometric generalization of Grassmann manifolds. We utilize and extend known algorithms for determining the minimal length geodesic, the initial direction generating the minimal length geodesic, and the distance between any pair of points on a flag manifold. The approach is illustrated in the context of (hyper) spectral imagery showing the impact of ambient dimension, sample dimension, and flag structure.  more » « less
Award ID(s):
1830676
PAR ID:
10311262
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We extend the self-organizing mapping algorithm to the problem of visualizing data on Grassmann manifolds. In this setting, a collection of k points in n-dimensions is represented by a k-dimensional subspace, e.g., via the singular value or QR-decompositions. Data assembled in this way is challenging to visualize given abstract points on the Grassmannian do not reside in Euclidean space. The extension of the SOM algorithm to this geometric setting only requires that distances between two points can be measured and that any given point can be moved towards a presented pattern. The similarity between two points on the Grassmannian is measured in terms of the principal angles between subspaces, e.g., the chordal distance. Further, we employ a formula for moving one subspace towards another along the shortest path, i.e., the geodesic between two points on the Grassmannian. This enables a faithful implementation of the SOM approach for visualizing data consisting of k-dimensional subspaces of n-dimensional Euclidean space. We illustrate the resulting algorithm on a hyperspectral imaging application. 
    more » « less
  2. Finding prototypes (e.g., mean and median) for a dataset is central to a number of common machine learning algorithms. Subspaces have been shown to provide useful, robust representations for datasets of images, videos and more. Since subspaces correspond to points on a Grassmann manifold, one is led to consider the idea of a subspace prototype for a Grassmann-valued dataset. While a number of different subspace prototypes have been described, the calculation of some of these prototypes has proven to be computationally expensive while other prototypes are affected by outliers and produce highly imperfect clustering on noisy data. This work proposes a new subspace prototype, the flag median, and introduces the FlagIRLS algorithm for its calculation. We provide evidence that the flag median is robust to outliers and can be used effectively in algorithms like Linde-Buzo-Grey (LBG) to produce improved clusterings on Grassmannians. Numerical experiments include a synthetic dataset, the MNIST handwritten digits dataset, the Mind's Eye video dataset and the UCF YouTube action dataset. The flag median is compared the other leading algorithms for computing prototypes on the Grassmannian, namely, the l_2-median and to the flag mean. We find that using FlagIRLS to compute the flag median converges in 4 iterations on a synthetic dataset. We also see that Grassmannian LBG with a codebook size of 20 and using the flag median produces at least a 10% improvement in cluster purity over Grassmannian LBG using the flag mean or l_2-median on the Mind's Eye dataset. 
    more » « less
  3. We extend the K-means and LBG algorithms to the framework of the Grassmann manifold to perform subspace quantization. For K-means it is possible to move a subspace in the direction of another using Grassmannian geodesics. For LBG the centroid computation is now done using a flag mean algorithm for averaging points on the Grassmannian. The resulting unsupervised algorithms are applied to the MNIST digit data set and the AVIRIS Indian Pines hyperspectral data set. 
    more » « less
  4. We extend the K-means and LBG algorithms to the framework of the Grassmann manifold to perform subspace quantization. For K-means it is possible to move a subspace in the direction of another using Grassmannian geodesics. For LBG the centroid computation is now done using a flag mean algorithm for averaging points on the Grassmannian. The resulting unsupervised algorithms are applied to the MNIST digit data set and the AVIRIS Indian Pines hyperspectral data set. 
    more » « less
  5. Representing videos as linear subspaces on Grassmann manifolds has made great strides in action recognition problems. Recent studies have explored the convenience of discriminant analysis by making use of Grassmann kernels. However, traditional methods rely on the matrix representation of videos based on the temporal dimension and suffer from not considering the two spatial dimensions. To overcome this problem, we keep the natural form of videos by representing video inputs as multidimensional arrays known as tensors and propose a tensor discriminant analysis approach on Grassmannian manifolds. Because matrix algebra does not handle tensor data, we introduce a new Grassmann projection kernel based on the tensor-tensor decomposition and product. Experiments with human action databases show that the proposed method performs well compared with the state-of-the-art algorithms. 
    more » « less