skip to main content


Title: Direct coculture of human pluripotent stem cell-derived cardiac progenitor cells with epicardial cells induces cardiomyocyte proliferation and reduces sarcomere organization
Award ID(s):
1648035
NSF-PAR ID:
10311315
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Molecular and Cellular Cardiology
Volume:
162
Issue:
C
ISSN:
0022-2828
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: Monolithic integrated thin film tandem solar cells consisting of a high bandgap perovskite top cell and a low bandgap thin film bottom cell are expected to reach higher power conversion efficiencies (PCEs) with lower manufacturing cost and environmental impacts than the market-dominant crystalline silicon photovoltaics. There have been several demonstrations of 4-terminal and 2-terminal perovskite tandem devices with CuInGaSe 2 (CIGS) or CuInSe 2 (CIS) and, similar to the other tandem structures, the optimization of this device relies on optimal choice for the perovskite bandgap and thickness. Therefore, further advancement will be enabled by tuning the perovskite absorber to maximize the photocurrent limited by the current match condition. Here, we systematically study the optical absorption and transmission of perovskite thin films with varying absorber band gap. Based on these results, we model the photocurrent generations in both perovskite and CIS subcells and estimate the performances of projected tandem devices by considering the ideally functioning perovskite and CIS device. Our results show that for perovskite layers with 500 nm thickness the optimal bandgap is around 1.6 eV. With these configurations, PCEs above 20% could be achieved by monolithically integrated perovskite/CIS tandem solar cells. Also by modelling the absorption at every layer we calculate the quantum efficiency at each subcell in addition to tracking optical losses. 
    more » « less
  2. The coronavirus disease 2019 (COVID-19) pandemic began in January 2020 in Wuhan, China, with a new coronavirus designated SARS-CoV-2. The principal cause of death from COVID-19 disease quickly emerged as acute respiratory distress syndrome (ARDS). A key ARDS pathogenic mechanism is the “Cytokine Storm”, which is a dramatic increase in inflammatory cytokines in the blood. In the last two years of the pandemic, a new pathology has emerged in some COVID-19 survivors, in which a variety of long-term symptoms occur, a condition called post-acute sequelae of COVID-19 (PASC) or “Long COVID”. Therefore, there is an urgent need to better understand the mechanisms of the virus. The spike protein on the surface of the virus is composed of joined S1–S2 subunits. Upon S1 binding to the ACE2 receptor on human cells, the S1 subunit is cleaved and the S2 subunit mediates the entry of the virus. The S1 protein is then released into the blood, which might be one of the pivotal triggers for the initiation and/or perpetuation of the cytokine storm. In this study, we tested the hypothesis that the S1 spike protein is sufficient to activate inflammatory signaling and cytokine production, independent of the virus. Our data support a possible role for the S1 spike protein in the activation of inflammatory signaling and cytokine production in human lung and intestinal epithelial cells in culture. These data support a potential role for the SARS-CoV-2 S1 spike protein in COVID-19 pathogenesis and PASC. 
    more » « less