skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Grid cells, border cells, and discrete complex analysis
We propose a mechanism enabling the appearance of border cells—neurons firing at the boundaries of the navigated enclosures. The approach is based on the recent discovery of discrete complex analysis on a triangular lattice, which allows constructing discrete epitomes of complex-analytic functions and making use of their inherent ability to attain maximal values at the boundaries of generic lattice domains. As it turns out, certain elements of the discrete-complex framework readily appear in the oscillatory models of grid cells. We demonstrate that these models can extend further, producing cells that increase their activity toward the frontiers of the navigated environments. We also construct a network model of neurons with border-bound firing that conforms with the oscillatory models.  more » « less
Award ID(s):
1901338
PAR ID:
10554725
Author(s) / Creator(s):
Editor(s):
Wu, Si
Publisher / Repository:
Frontiers in Computational Neuroscience
Date Published:
Journal Name:
Frontiers in Computational Neuroscience
Volume:
17
ISSN:
1662-5188
Subject(s) / Keyword(s):
grid cells, border cells, percolation, discrete complex analysis, learning and memory, hippocampo-cortical network
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present the implementation of Velocity Controlled (or tuned) Oscillators (VCO) to model spatial coding and navigation in the mammalian hippocampus. Specifically, we demonstrate these spatial cells by representing a spatial firing map of grid, place, and border cells. Since the VCO is the basis for Oscillatory Interference (OI) models based on the Spatial Envelope Synthesis (SES) approach of hippocampal and entorhinal navigation, we use these models in our hardware implementation to construct more complex spatial cells from simple interference between VCOs. We develop the design of a VCO ASIC chip containing up to 128 independently tuned VCOs. 
    more » « less
  2. Abstract A common approach to interpreting spiking activity is based on identifying the firing fields—regions in physical or configuration spaces that elicit responses of neurons. Common examples include hippocampal place cells that fire at preferred locations in the navigated environment, head direction cells that fire at preferred orientations of the animal’s head, view cells that respond to preferred spots in the visual field, etc. In all these cases, firing fields were discovered empirically, by trial and error. We argue that the existence and a number of properties of the firing fields can be established theoretically, through topological analyses of the neuronal spiking activity. In particular, we use Leray criterion powered by persistent homology theory, Eckhoff conditions and Region Connection Calculus to verify consistency of neuronal responses with a single coherent representation of space. 
    more » « less
  3. Medial entorhinal cortex (MEC) supports a wide range of navigational and memory related behaviors. Well-known experimental results have revealed specialized cell types in MEC — e.g. grid, border, and head-direction cells — whose highly stereotypical response profiles are suggestive of the role they might play in sup- porting MEC functionality. However, the majority of MEC neurons do not exhibit stereotypical firing patterns. How should the response profiles of these more “het- erogeneous” cells be described, and how do they contribute to behavior? In this work, we took a computational approach to addressing these questions. We first performed a statistical analysis that shows that heterogeneous MEC cells are just as reliable in their response patterns as the more stereotypical cell types, suggest- ing that they have a coherent functional role. Next, we evaluated a spectrum of candidate models in terms of their ability to describe the response profiles of both stereotypical and heterogeneous MEC cells. We found that recently developed task-optimized neural network models are substantially better than traditional grid cell-centric models at matching most MEC neuronal response profiles — including those of grid cells themselves — despite not being explicitly trained for this pur- pose. Specific choices of network architecture (such as gated nonlinearities and an explicit intermediate place cell representation) have an important effect on the ability of the model to generalize to novel scenarios, with the best of these models closely approaching the noise ceiling of the data itself. We then performed in silico experiments on this model to address questions involving the relative functional relevance of various cell types, finding that heterogeneous cells are likely to be just as involved in downstream functional outcomes (such as path integration) as grid and border cells. Finally, inspired by recent data showing that, going beyond their spatial response selectivity, MEC cells are also responsive to non-spatial rewards, we introduce a new MEC model that performs reward-modulated path integration. We find that this unified model matches neural recordings across all variable-reward conditions. Taken together, our results point toward a conceptually principled goal-driven modeling approach for moving future experimental and computational efforts beyond overly-simplistic single-cell stereotypes. 
    more » « less
  4. Abstract Spatial patterning of different cell types is crucial for tissue engineering and is characterized by the formation of sharp boundary between segregated groups of cells of different lineages. The cell−cell boundary layers, depending on the relative adhesion forces, can result in kinks in the border, similar to fingering patterns between two viscous partially miscible fluids which can be characterized by its fractal dimension. This suggests that mathematical models used to analyze the fingering patterns can be applied to cell migration data as a metric for intercellular adhesion forces. In this study, we develop a novel computational analysis method to characterize the interactions between blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), which form segregated vasculature by recognizing each other through podoplanin. We observed indiscriminate mixing with LEC−LEC and BEC−BEC pairs and a sharp boundary between LEC−BEC pair, and fingering-like patterns with pseudo-LEC−BEC pairs. We found that the box counting method yields fractal dimension between 1 for sharp boundaries and 1.3 for indiscriminate mixing, and intermediate values for fingering-like boundaries. We further verify that these results are due to differential affinity by performing random walk simulations with differential attraction to nearby cells and generate similar migration pattern, confirming that higher differential attraction between different cell types result in lower fractal dimensions. We estimate the characteristic velocity and interfacial tension for our simulated and experimental data to show that the fractal dimension negatively correlates with capillary number (Ca), further indicating that the mathematical models used to study viscous fingering pattern can be used to characterize cell−cell mixing. Taken together, these results indicate that the fractal analysis of segregation boundaries can be used as a simple metric to estimate relative cell−cell adhesion forces between different cell types. 
    more » « less
  5. Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 ( KCNC1 ) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills. 
    more » « less