skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Are Covert DDoS Attacks Facing Multi-Feature Detectors Feasible?
We state and prove the square root scaling laws for the amount of traffic injected by a covert attacker into a net- work from a set of homes under the assumption that traffic descriptors follow a multivariate Gaussian distribution. We numerically evaluate the obtained result under realistic set- tings wherein traffic is collected from real users, leveraging detectors that exploit multiple features. Under such circum- stances, we observe that phase transitions predicted by the model still hold.  more » « less
Award ID(s):
1740895
PAR ID:
10311337
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of 2021 ACM SIGMETRICS MAMA Workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less
  2. Network tomography aims at estimating source–destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for Poisson traffic over networks operating under deterministic as well as random routing regimes. In this article, we expand Vardi's second-order moment matching rate estimation approach to higher-order cumulant matching with the goal of increasing the column rank of the mapping and consequently improving the rate estimation accuracy. We develop a systematic set of linear cumulant matching equations and express them compactly in terms of the Khatri–Rao product. Both least squares estimation and iterative minimum I-divergence estimation are considered. We develop an upper bound on the mean squared error (MSE) in least squares rate estimation from empirical cumulants. We demonstrate that supplementing Vardi's approach with the third-order empirical cumulant reduces its minimum averaged normalized MSE in rate estimation by almost 20% when iterative minimum I-divergence estimation was used. 
    more » « less
  3. This paper presents methods to obtain analytical solutions to a class of continuous traffic equilibrium problems, where continuously distributed customers from a bounded two-dimensional service region seek service from one of several discretely located facilities via the least congested travel path. We show that under certain conditions, the traffic flux at equilibrium, which is governed by a set of partial differential equations, can be decomposed with respect to each facility and solved analytically. This finding paves the foundation for an efficient solution scheme. Closed-form solution to the equilibrium problem can be obtained readily when the service region has a certain regular shape, or through an additional conformal mapping if the service region has an arbitrary simply connected shape. These results shed light on some interesting properties of traffic equilibrium in a continuous space. This paper also discusses how service facility locations can be easily optimized by incorporating analytical formulas for the total generalized cost of spatially distributed customers under congestion. Examples of application contexts include gates or booths for pedestrian traffic, as well as launching sites for air vehicles. Numerical examples are used to show the superiority of the proposed optimization framework, in terms of both solution quality and computation time, as compared with traditional approaches based on discrete mathematical programming and partial differential equation solution methods. An example with the metro station entrances at the Beijing Railway Station is also presented to illustrate the usefulness of the proposed traffic equilibrium and location design models. 
    more » « less
  4. Given historical traffic distributions and associated urban conditions observed in a city, the conditional urban traffic estimation problem aims at estimating realistic future projections of the traffic under a set of new urban conditions, e.g., new bus routes, rainfall intensity, and travel demands. The problem is important in reducing traffic congestion, improving public transportation efficiency, and facilitating urban planning. However, solving this problem is challenging due to the strong spatial dependencies of traffic patterns and the complex relations between the traffic and urban conditions. Recently, we proposed a Complex-Condition-Controlled Generative Adversarial Network C3-GAN, which tackles both of the challenges and solves the urban traffic estimation problem under various complex conditions by adding a fixed embedding network and an inference network on top of the standard conditional GAN model. The randomly chosen embedding network transforms the complex conditions to latent vectors, and the inference network enhances the connections between the embedded vectors and the traffic data. However, a randomly chosen embedding network cannot always successfully extract features of complex urban conditions, which indicates C3-GAN is unable to uniquely map different urban conditions to proper latent distributions. Thus, C3-GAN would fail in certain traffic estimation tasks. Besides, C3-GAN is hard to train due to vanishing gradients and mode collapse problems. To address these issues, in this article, we extend our prior work by introducing a new deep generative model, namely, C3-GAN+, which significantly improves the estimation performance and model stability. C3-GAN+ has new objective, architecture, and training algorithm. The new objective applies Wasserstein loss to the conditional generation case to encourage stable training. Shared convolutional layers between the discriminator and the inference network help to capture spatial dependencies of traffic more efficiently, part of the shared convolutional layers are used to update the embedding network periodically aiming to encourage good representation and avoid model divergence. Extensive experiments on real-world datasets demonstrate that our C3-GAN+ produces high-quality traffic estimations and outperforms state-of-the-art baseline methods. 
    more » « less
  5. Urban transportation networks are vital for the economic and environmental well-being of cities and they are faced with the integration of Human-Driven Vehicles (HVs) and Connected and Autonomous Vehicles (CAVs) challenge. Most of the traditional traffic management systems fail to effectively manage the dynamic and complex flows of mixed traffic, mainly because of large computational requirements and the restrictions that control models of traffic lights directly based on extensive and continuous training data. Most of the times, the operational flexibility of CAVs is severely compromised for the safety of HVs, or CAVs are given high priority without taking into account the efficiency of HVs leading to lower performance, especially at low CAV penetration rates. On the other hand, the existing adaptive traffic light approaches were usually partial and could not adapt to the real-time behaviors of the traffic system. Some systems operate with inflexible temporal control plans that cannot react to variations in traffic flow or use adaptive control strategies that are based on a limited set of static traffic conditions. This paper presents a novel traffic light control approach utilizing the BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) clustering algorithm combined with digital twins for a more adaptive and efficient system. The BIRCH is effective in processing large datasets because it clusters data points incrementally and dynamically into a small set of representatives. The suggested method does not only enable better simulation and prediction of traffic patterns but also makes possible the real-time adaptive control of traffic signals at signalized intersections. It also improves traffic flow, reduces congestion, and minimizes vehicle idling time by adjusting the green and red light durations dynamically based on both real-time and historical traffic data. This approach is assessed under different traffic intensities, which include low, moderate, and high, while efficiency, fuel consumption, and the number of stops are being compared with the traditional and the existing adaptive traffic management systems. 
    more » « less