Given an urban development plan and the historical traffic observations over the road network, the Conditional Urban Traffic Estimation problem aims to estimate the resulting traffic status prior to the deployment of the plan. This problem is of great importance to urban development and transportation management, yet is very challenging because the plan would change the local travel demands drastically and the new travel demand pattern might be unprecedented in the historical data. To tackle these challenges, we propose a novel Conditional Urban Traffic Generative Adversarial Network (Curb-GAN), which provides traffic estimations in consecutive time slots based on different (unprecedented) travel demands, thus enables urban planners to accurately evaluate urban plans before deploying them. The proposed Curb-GAN adopts and advances the conditional GAN structure through a few novel ideas: (1) dealing with various travel demands as the "conditions" and generating corresponding traffic estimations, (2) integrating dynamic convolutional layers to capture the local spatial auto-correlations along the underlying road networks, (3) employing self-attention mechanism to capture the temporal dependencies of the traffic across different time slots. Extensive experiments on two real-world spatio-temporal datasets demonstrate that our Curb-GAN outperforms major baseline methods in estimation accuracy under various conditions and can produce more meaningful estimations. 
                        more » 
                        « less   
                    This content will become publicly available on February 28, 2026
                            
                            C3-GAN+: Complex-Condition-Controlled Generative Adversarial Networks with Enhanced Embedding
                        
                    
    
            Given historical traffic distributions and associated urban conditions observed in a city, the conditional urban traffic estimation problem aims at estimating realistic future projections of the traffic under a set of new urban conditions, e.g., new bus routes, rainfall intensity, and travel demands. The problem is important in reducing traffic congestion, improving public transportation efficiency, and facilitating urban planning. However, solving this problem is challenging due to the strong spatial dependencies of traffic patterns and the complex relations between the traffic and urban conditions. Recently, we proposed a Complex-Condition-Controlled Generative Adversarial Network C3-GAN, which tackles both of the challenges and solves the urban traffic estimation problem under various complex conditions by adding a fixed embedding network and an inference network on top of the standard conditional GAN model. The randomly chosen embedding network transforms the complex conditions to latent vectors, and the inference network enhances the connections between the embedded vectors and the traffic data. However, a randomly chosen embedding network cannot always successfully extract features of complex urban conditions, which indicates C3-GAN is unable to uniquely map different urban conditions to proper latent distributions. Thus, C3-GAN would fail in certain traffic estimation tasks. Besides, C3-GAN is hard to train due to vanishing gradients and mode collapse problems. To address these issues, in this article, we extend our prior work by introducing a new deep generative model, namely, C3-GAN+, which significantly improves the estimation performance and model stability. C3-GAN+ has new objective, architecture, and training algorithm. The new objective applies Wasserstein loss to the conditional generation case to encourage stable training. Shared convolutional layers between the discriminator and the inference network help to capture spatial dependencies of traffic more efficiently, part of the shared convolutional layers are used to update the embedding network periodically aiming to encourage good representation and avoid model divergence. Extensive experiments on real-world datasets demonstrate that our C3-GAN+ produces high-quality traffic estimations and outperforms state-of-the-art baseline methods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1942680
- PAR ID:
- 10611493
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Knowledge Discovery from Data
- Volume:
- 19
- Issue:
- 2
- ISSN:
- 1556-4681
- Page Range / eLocation ID:
- 1 to 21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Estimating human mobility responses to the large-scale spreading of the COVID-19 pandemic is crucial, since its significance guides policymakers to give Non-pharmaceutical Interventions, such as closure or reopening of businesses. It is challenging to model due to complex social contexts and limited training data. Recently, we proposed a conditional generative adversarial network (COVID-GAN) to estimate human mobility response under a set of social and policy conditions integrated from multiple data sources. Although COVID-GAN achieves a good average estimation accuracy under real-world conditions, it produces higher errors in certain regions due to the presence of spatial heterogeneity and outliers. To address these issues, in this article, we extend our prior work by introducing a new spatio-temporal deep generative model, namely, COVID-GAN+. COVID-GAN+ deals with the spatial heterogeneity issue by introducing a new spatial feature layer that utilizes the local Moran statistic to model the spatial heterogeneity strength in the data. In addition, we redesign the training objective to learn the estimated mobility changes from historical average levels to mitigate the effects of spatial outliers. We perform comprehensive evaluations using urban mobility data derived from cell phone records and census data. Results show that COVID-GAN+ can better approximate real-world human mobility responses than prior methods, including COVID-GAN.more » « less
- 
            The Random Dot Product Graph (RDPG) is a popular generative graph model for relational data. RDPGs postulate there exist latent positions for each node, and specifies the edge formation probabilities via the inner product of the corresponding latent vectors. The embedding task of estimating these latent positions from observed graphs is usually posed as a non-convex matrix factorization problem. The workhorse Adjacency Spectral Embedding offers an approximate solution obtained via the eigendecomposition of the adjacency matrix, which enjoys solid statistical guarantees but can be computationally intensive and is formally solving a surrogate problem. In this paper, we bring to bear recent non-convex optimization advances and demonstrate their impact to RDPG inference. We develop first-order gradient descent methods to better solve the original optimization problem, and to accommodate broader network embedding applications in an organic way. The effectiveness of the resulting graph representation learning framework is demonstrated on both synthetic and real data. We show the algorithms are scalable, robust to missing network data, and can track the latent positions over time when the graphs are acquired in a streaming fashion.more » « less
- 
            The popular Random Dot Product Graph (RDPG) generative model postulates that each node has an associated (latent) vector, and the probability of existence of an edge between two nodes is their inner-product (with variants to consider directed and weighted graphs). In any case, the latent vectors may be estimated through a spectral decomposition of the adjacency matrix, the so-called Adjacency Spectral Embedding (ASE). Assume we are monitoring a stream of graphs and the objective is to track the latent vectors. Examples include recommender systems or monitoring of a wireless network. It is clear that performing the ASE of each graph separately may result in a prohibitive computation load. Furthermore, the invariance to rotations of the inner product complicates comparing the latent vectors at different time-steps. By considering the minimization problem underlying ASE, we develop an iterative algorithm that updates the latent vectors' estimation as new graphs from the stream arrive. Differently to other proposals, our method does not accumulate errors and thus does not requires periodically re-computing the spectral decomposition. Furthermore, the pragmatic setting where nodes leave or join the graph (e.g. a new product in the recommender system) can be accommodated as well. Our code is available at https://github.com/marfiori/efficient-ASEmore » « less
- 
            The majority of state-of-the-art deep learning methods are discriminative approaches, which model the conditional distribution of labels given inputs features. The success of such approaches heavily depends on high-quality labeled instances, which are not easy to obtain, especially as the number of candidate classes increases. In this paper, we study the complementary learning problem. Unlike ordinary labels, complementary labels are easy to obtain because an annotator only needs to provide a yes/no answer to a randomly chosen candidate class for each instance. We propose a generative-discriminative complementary learning method that estimates the ordinary labels by modeling both the conditional (discriminative) and instance (generative) distributions. Our method, we call Complementary Conditional GAN (CCGAN), improves the accuracy of predicting ordinary labels and is able to generate high-quality instances in spite of weak supervision. In addition to the extensive empirical studies, we also theoretically show that our model can retrieve the true conditional distribution from the complementarily-labeled data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
