skip to main content


Title: The driving factors of new particle formation and growth in the polluted boundary layer
Abstract. New particle formation (NPF) is a significant source of atmosphericparticles, affecting climate and air quality. Understanding the mechanismsinvolved in urban aerosols is important to develop effective mitigationstrategies. However, NPF rates reported in the polluted boundary layer spanmore than 4 orders of magnitude, and the reasons behind this variability are the subject of intense scientific debate. Multiple atmospheric vapours have beenpostulated to participate in NPF, including sulfuric acid, ammonia, aminesand organics, but their relative roles remain unclear. We investigated NPFin the CLOUD chamber using mixtures of anthropogenic vapours that simulatepolluted boundary layer conditions. We demonstrate that NPF in pollutedenvironments is largely driven by the formation of sulfuric acid–baseclusters, stabilized by the presence of amines, high ammonia concentrationsand lower temperatures. Aromatic oxidation products, despite their extremelylow volatility, play a minor role in NPF in the chosen urban environment butcan be important for particle growth and hence for the survival of newlyformed particles. Our measurements quantitatively account for NPF in highlydiverse urban environments and explain its large observed variability. Suchquantitative information obtained under controlled laboratory conditionswill help the interpretation of future ambient observations of NPF rates inpolluted atmospheres.  more » « less
Award ID(s):
1801897 1801574 1801280 1801329
NSF-PAR ID:
10311361
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
18
ISSN:
1680-7324
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Intense and frequent new particle formation (NPF) events have been observed in polluted urban environments, yet the dominant mechanisms are still under debate. To understand the key species and governing processes of NPF in polluted urban environments, we conducted comprehensive measurements in downtown Beijing during January–March, 2018. We performed detailed analyses on sulfuric acid cluster composition and budget, as well as the chemical and physical properties of oxidized organic molecules (OOMs). Our results demonstrate that the fast clustering of sulfuric acid (H2SO4) and base molecules triggered the NPF events, and OOMs further helped grow the newly formed particles toward climate- and health-relevant sizes. This synergistic role of H2SO4, base species, and OOMs in NPF is likely representative of polluted urban environments where abundant H2SO4 and base species usually co-exist, and OOMs are with moderately low volatility when produced under high NOx concentrations. 
    more » « less
  2. Abstract

    Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration, cloud formation and hence the climate. The clustering of acid and base molecules is a major mechanism driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid–base cluster composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high formation rate of new particles. Here we present strong evidence for the existence of base molecules such as amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4 clusters. The proposed mechanism is very consistent with measured new particle formation in urban Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines, even at low concentrations and when undetected in the smallest clusters, can be crucial to particle formation in the planetary boundary layer.

     
    more » « less
  3. Abstract New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN) 1–4 . However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region 5,6 . Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles—comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO 3 –H 2 SO 4 –NH 3 nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere. 
    more » « less
  4. Abstract. In the present-day atmosphere, sulfuric acid is the mostimportant vapour for aerosol particle formation and initial growth. However,the growth rates of nanoparticles (<10 nm) from sulfuric acidremain poorly measured. Therefore, the effect of stabilizing bases, thecontribution of ions and the impact of attractive forces on molecularcollisions are under debate. Here, we present precise growth ratemeasurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performedunder atmospheric conditions in the CERN (EuropeanOrganization for Nuclear Research) CLOUD chamber. Our results showthat the evaporation of sulfuric acid particles above 2 nm is negligible,and growth proceeds kinetically even at low ammonia concentrations. Theexperimental growth rates exceed the hard-sphere kinetic limit for thecondensation of sulfuric acid. We demonstrate that this results fromvan der Waals forces between the vapour molecules and particles anddisentangle it from charge–dipole interactions. The magnitude of theenhancement depends on the assumed particle hydration and collisionkinetics but is increasingly important at smaller sizes, resulting in asteep rise in the observed growth rates with decreasing size. Including theexperimental results in a global model, we find that the enhanced growth rate ofsulfuric acid particles increases the predicted particle number concentrationsin the upper free troposphere by more than 50 %. 
    more » « less
  5. Abstract. In atmospheric sulfuric-acid-driven particle formation, bases are able to stabilize the initial molecular clusters and thus enhance particle formation. The enhancing potential of a stabilizing base is affected by different factors, such as the basicity and abundance. Here we use weak (ammonia), medium strong (dimethylamine) and very strong (guanidine) bases as representative atmospheric base compounds, and we systematically investigate their ability to stabilize sulfuric acid clusters. Using quantum chemistry, we study proton transfer as well as intermolecular interactions and symmetry in clusters, of which the former is directly related to the base strength and the latter to the structural effects. Based on the theoretical cluster stabilities and cluster population kinetics modeling, we provide molecular-level mechanisms of cluster growth and show that in electrically neutral particle formation, guanidine can dominate formation events even at relatively low concentrations. However, when ions are involved, charge effects can also stabilize small clusters for weaker bases. In this case the atmospheric abundance of the bases becomes more important, and thus ammonia is likely to play a key role. The theoretical findings are validated by cluster distribution experiments, as well as comparisons to previously reported particle formation rates, showing a good agreement. 
    more » « less