skip to main content


Title: Managing Cybersecurity Risk Using Threat Based Methodology for Evaluation of Cybersecurity Architectures
To manage limited resources available to protect against cybersecurity threats, organizations must use risk management approach to prioritize investments in protection capabilities. Currently, there is no commonly accepted methodology for cybersecurity professionals that considers one of the key elements of risk function - threat landscape - to identify gaps (blinds spots) where cybersecurity protections do not exist and where future investments are needed. This paper discusses a new, threat-based approach for evaluation of cybersecurity architectures that allows organizations to look at their cybersecurity protections from the standpoint of an adversary. The approach is based on a methodology developed by the Department of Defense and further expanded by the Department of Homeland Security. The threat-based approach uses a cyber threat framework to enumerate all threat actions previously observed in the wild and scores protections (cybersecurity architectural capabilities) against each threat action for their ability to: a) detect; b) protect against; and c) help in recovery from the threat action. The answers form a matrix called capability coverage map - a visual representation of protections coverage, gaps, and overlaps against threats. To allow for prioritization, threat actions can be organized in a threat heat map - a visual representation of threat actions' prevalence and maneuverability that can be overlaid on top of a coverage map. The paper demonstrates a new threat modeling methodology and recommends future research to establish a decision-making framework for designing cybersecurity architectures (capability portfolios) that maximize protections (described as coverage in terms of protect, detect, and respond functions) against known cybersecurity threats.  more » « less
Award ID(s):
1832635
NSF-PAR ID:
10311477
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 Systems and Information Engineering Design Symposium (SIEDS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Madagascar is one of the world’s foremost biodiversity hotspots. Its unique assemblage of plants, animals, and fungi—the majority of which evolved on the island and occur nowhere else—is both diverse and threatened. After human arrival, the island’s entire megafauna became extinct, and large portions of the current flora and fauna may be on track for a similar fate. Conditions for the long-term survival of many Malagasy species are not currently met because of multiple anthropogenic threats. ADVANCES We review the extinction risk and threats to biodiversity in Madagascar, using available international assessment data as well as a machine learning analysis to predict the extinction risks and threats to plant species lacking assessments. Our compilation of global International Union for Conservation of Nature (IUCN) Red List assessments shows that overexploitation alongside unsustainable agricultural practices affect 62.1 and 56.8% of vertebrate species, respectively, and each affects nearly 90% of all plant species. Other threats have a relatively minor effect today but are expected to increase in coming decades. Because only one-third (4652) of all Malagasy plant species have been formally assessed, we carried out a neural network analysis to predict the putative status and threats for 5887 unassessed species and to evaluate biases in current assessments. The percentage of plant species currently assessed as under threat is probably representative of actual numbers, except in the case of the ferns and lycophytes, where significantly more species are estimated to be threatened. We find that Madagascar is home to a disproportionately high number of Evolutionarily Distinct and Globally Endangered (EDGE) species. This further highlights the urgency for evidence-based and effective in situ and ex situ conservation. Despite these alarming statistics and trends, we find that 10.4% of Madagascar’s land area is protected and that the network of protected areas (PAs) covers at least part of the range of 97.1% of terrestrial and freshwater vertebrates with known distributions (amphibians, freshwater fishes, reptiles, birds, and mammal species combined) and 67.7% of plant species (for threatened species, the percentages are 97.7% for vertebrates and 79.6% for plants). Complementary to this, ex situ collections hold 18% of vertebrate species and 23% of plant species. Nonetheless, there are still many threatened species that do not occur within PAs and are absent from ex situ collections, including one amphibian, three mammals, and seven reptiles, as well as 559 plants and more yet to be assessed. Based on our updated vegetation map, we find that the current PA network provides good coverage of the major habitats, particularly mangroves, spiny forest, humid forest, and tapia, but subhumid forest and grassland-woodland mosaic have very low areas under protection (5.7 and 1.8% respectively). OUTLOOK Madagascar is among the world’s poorest countries, and its biodiversity is a key resource for the sustainable future and well-being of its citizens. Current threats to Madagascar’s biodiversity are deeply rooted in historical and present social contexts, including widespread inequalities. We therefore propose five opportunities for action to further conservation in a just and equitable way. First, investment in conservation and restoration must be based on evidence and effectiveness and be tailored to meet future challenges through inclusive solutions. Second, expanded biodiversity monitoring, including increased dataset production and availability, is key. Third, improving the effectiveness of existing PAs—for example through community engagement, training, and income opportunities—is more important than creating new ones. Fourth, conservation and restoration should not focus solely on the PA network but should also include the surrounding landscapes and communities. And finally, conservation actions must address the root causes of biodiversity loss, including poverty and food insecurity. In the eyes of much of the world, Madagascar’s biodiversity is a unique global asset that needs saving; in the daily lives of many of the Malagasy people, it is a rapidly diminishing source of the most basic needs for subsistence. Protecting Madagascar’s biodiversity while promoting social development for its people is a matter of the utmost urgency Visual representation of five key opportunities for conserving and restoring Madagascar’s rapidly declining biodiversity identified in this Review. The dashed lines point to representative vegetation types where these recommendations could have tangible effects, but the opportunities are applicable across Madagascar. ILLUSTRATION: INESSA VOET 
    more » « less
  2. With the increasing penetration of cyber systems in the power grid, it is becoming increasingly imperative to deploy adequate security measures all across the grid to secure it against any kind of cyber threat. Since financial resources for investment in security are limited, optimal allocation of these cybersecurity resources in the grid is extremely important. At the same time, optimization of these investments proves to be challenging due to the uncertain behavior of attackers and the dynamically changing threat landscape. Existing solutions for this problem either do not address the dynamic behavior of adversaries or lack in the practical feasibility of the defense models. This paper addresses the problem of optimizing investment strategies in the cybersecurity infrastructure of a smart grid using a game-theoretic approach. The attacker is modeled using various attacker profiles which represent the possible types of adversaries in the context of CPS. Each profile has certain characteristics to bring out the aspect of uncertain behavior of the adversaries. The defender is modeled with various pragmatic characteristics that can be easily translated to the real-world grid scenarios for implementation. These characteristics include the standards laid down by the North American Electric Reliability Corporation (NERC) for Critical Infrastructure Protection (CIP) commonly known as the NERC-CIP standards. The game-theoretic framework allows us to obtain optimal strategies that the defender of the grid can adopt to minimize its losses against the possible attack threats on the grid. The concept is illustrated by a simplistic 3-bus power system model case study which depicts how the solution can be translated to practical implementation in the actual grid. 
    more » « less
  3. Martin, A ; Hinkelmann, K ; Fill, H.-G. ; Gerber, A. ; Lenat, D. ; Stolle, R. ; van Harmelen, F. (Ed.)
    AI models for cybersecurity have to detect and defend against constantly evolving cyber threats. Much effort is spent building defenses for zero days and unseen variants of known cyber-attacks. Current AI models for cybersecurity struggle with these yet unseen threats due to the constantly evolving nature of threat vectors, vulnerabilities, and exploits. This paper shows that cybersecurity AI models will be improved and more general if we include semi-structured representations of background knowledge. This could include information about the software and systems, as well as information obtained from observing the behavior of malware samples captured and detonated in honeypots. We describe how we can transfer this knowledge into forms that the RL models can directly use for decision-making purposes. 
    more » « less
  4. In the face of increasingly common (and costly) cyberattacks, many organizations have focused their security investments largely on technological solutions. However, in many cases, attacks rely not on an outsider’s ability to crack an organization’s technical defenses, but rather on an internal employee knowingly or unknowingly letting a bad actor in. But what motivates these employees’ actions? A recent study suggests that the vast majority of intentional policy breaches stem not from some malicious desire to cause harm, but rather, from the perception that following the rules would impede employees’ ability to get their work done effectively. The study further found that employees were more likely to violate policy on days when they were more stressed out, suggesting that high stress levels can reduce people’s tolerance for following rules that seem to get in the way of doing their jobs. In light of these findings, the authors suggest several ways in which organizations should rethink their approach to cybersecurity and implement policies that address the real, underlying factors creating vulnerabilities. 
    more » « less
  5. Abstract

    The rise in smart water technologies has introduced new cybersecurity vulnerabilities for water infrastructures. However, the implications of cyber‐physical attacks on the systems like urban drainage systems remain underexplored. This research delves into this gap, introducing a method to quantify flood risks in the face of cyber‐physical threats. We apply this approach to a smart stormwater system—a real‐time controlled network of pond‐conduit configurations, fitted with water level detectors and gate regulators. Our focus is on a specific cyber‐physical threat: false data injection (FDI). In FDI attacks, adversaries introduce deceptive data that mimics legitimate system noises, evading detection. Our risk assessment incorporates factors like sensor noises and weather prediction uncertainties. Findings reveal that FDIs can amplify flood risks by feeding the control system false data, leading to erroneous outflow directives. Notably, FDI attacks can reshape flood risk dynamics across different storm intensities, accentuating flood risks during less severe but more frequent storms. This study offers valuable insights for strategizing investments in smart stormwater systems, keeping cyber‐physical threats in perspective. Furthermore, our risk quantification method can be extended to other water system networks, such as irrigation channels and multi‐reservoir systems, aiding in cyber‐defense planning.

     
    more » « less