skip to main content

Title: Modeling regional impacts and resilience to water service disruptions in urban economies
Water is a critical natural resource that sustains the productivity of many economic sectors, whether directly or indirectly. Climate change alongside rapid growth and development are a threat to water sustainability and regional productivity. In this paper, we develop an extension to the economic input-output model to assess the impact of water supply disruptions to regional economies. The model utilizes the inoperability variable, which measures the extent to which an infrastructure system or economic sector is unable to deliver its intended output. While the inoperability concept has been utilized in previous applications, this paper offers extensions that capture the time-varying nature of inoperability as the sectors recover from a disruptive event, such as drought. The model extension is capable of inserting inoperability adjustments within the drought timeline to capture time-varying likelihoods and severities, as well as the dependencies of various economic sectors on water. The model was applied to case studies of severe drought in two regions: (1) the state of Massachusetts (MA) and (2) the US National Capital Region (NCR). These regions were selected to contrast drought resilience between a mixed urban–rural region (MA) and a highly urban region (NCR). These regions also have comparable overall gross domestic products more » despite significant differences in the distribution and share of the economic sectors comprising each region. The results of the case studies indicate that in both regions, the utility and real estate sectors suffer the largest economic loss; nonetheless, results also identify region-specific sectors that incur significant losses. For the NCR, three sectors in the top 10 ranking of highest economic losses are government-related, whereas in the MA, four sectors in the top 10 are manufacturing sectors. Furthermore, the accommodation sector has also been included in the NCR case intuitively because of the high concentration of museums and famous landmarks. In contrast, the Wholesale Trade sector was among the sectors with the highest economic losses in the MA case study because of its large geographic size conducive for warehouses used as nodes for large-scale supply chain networks. Future modeling extensions could potentially include analysis of water demand and supply management strategies that can enhance regional resilience against droughts. Other regional case studies can also be pursued in future efforts to analyze various categories of drought severity beyond the case studies featured in this paper. « less
Award ID(s):
1832635 1944157
Publication Date:
Journal Name:
Environment and Planning B: Urban Analytics and City Science
Sponsoring Org:
National Science Foundation
More Like this
  1. Sustainable transition to low carbon and zero waste economy requires a macroscopic evaluation of opportunities and impact of adopting emerging technologies in a region. However, a full assessment of current physical flows and wastes is a tedious task, thus leading to lack of comprehensive assessment before scale up and adoption of emerging technologies. Utilizing the mechanistic models developed for engineering and biological systems with macroeconomic framework of Input-Output models, we propose a novel integrated approach to fully map the physical economy, that automates the process of mapping industrial flows and wastes in a region. The approach is demonstrated by mapping the agro-based physical economy of the state of Illinois, USA by using mechanistic models for 10 sectors, which have high impact on waste generation. Each model mechanistically simulates the material transformation processes in the economic sector and provides the material flow information for mapping. The model for physical economy developed in the form of a Physical Input-Output Table (PIOT) captures the interindustry physical interactions in the region and waste flows, thus providing insights into the opportunities to implement circular economy strategies i.e., adoption of recycling technologies at large scale. In Illinois, adoption of technologies for industrial waste-water & hog manuremore »recycling will have the highest impact by reducing > 62 % of hog industry waste, > 99 % of soybean hull waste, and > 96 % of dry corn milling (corn ethanol production) waste reduction. Small % reduction in fertilizer manufacturing waste was also observed. The physical economy model revealed that Urea sector had the highest material use of 5.52E+08 tons and green bean farming with lowest material use of 1.30E+05 tons for the year modeled (2018). The mechanistic modeling also allowed to capture elemental flows across the physical economy with Urea sector using 8.25E+07 tons of carbon per operation-year (highest) and bean farming using 3.90E+04 tons of elemental carbon per operation-year (least). The approach proposed here establishes a connection between engineering and physical economy modeling community for standardizing the mapping of physical economy that can provide insights for successfully transitioning to a low carbon and zero waste circular economy.« less
  2. f. Analyzing the US Virgin Islands’ resilience in relation to their infrastructure in the case of natural disasters - The U.S. Virgin Islands are comprised of four islands in the Caribbean: St. Croix, St. Thomas, St. John, and Water Island. With the high frequency of hurricanes in the Caribbean region, these islands commonly experience infrastructure disruptions. Worse, disasters such as Irma and Maria in 2017 make total losses far from unexpected. The islands have also seen a history of economic and political turmoil, rendering their infrastructure insufficient for resisting such devastating events and the lower class more susceptible to disruptions. These factors combined posits the need for resilient infrastructure to be established on the islands. Resilient infrastructure involves bolstering the utilities that are required for modern life, such as clean water, power, and transportation, such that they maintain the highest output possible when disrupted by a disaster and can be easily and effectively restored to their status quo. Our work this semester focused on assessing the infrastructure on the islands to energy options could be better implemented. This has involved gathering as much quantitative and qualitative data on the USVI as possible. This was done in order to perform amore »rigorous analysis on which sections of the network are most necessary for the interconnected systems network together to function; these sections are known as critical points. Only so much data is available overseas, however, so to complete our assessment we will identify what we need to fill in the gaps in our data by working in collaboration with the University of the Virgin Islands. We are constructing an accurate disaster model of the USVI infrastructure and determine its critical points as well as make recommendations for additional hazard and mitigation plans. We will then focus on getting these recommendations to the right positions of power, which could lead to establishing resilient infrastructure on the island and pave the way to a more sustainable future. In the future, we hope to create a cooperative learning bond with the University of the Virgin Islands so that future applications of the project can proceed.« less
  3. Abstract

    Reducing energy consumption for urban water management may yield economic and environmental benefits. Few studies provide comprehensive assessments of energy needs for urban water sectors that include both utility operations and household use. Here, we evaluate the energy needs for urban water management in metropolitan Los Angeles (LA) County. Using planning scenarios that include both water conservation and alternative supply options, we estimate energy requirements of water imports, groundwater pumping, distribution in pipes, water and wastewater treatment, and residential water heating across more than one hundred regional water agencies covering over 9 million people. Results show that combining water conservation with alternative local supplies such as stormwater capture and water reuse (nonpotable or indirect potable) can reduce the energy consumption and intensity of water management in LA. Further advanced water treatment for direct potable reuse could increase energy needs. In aggregate, water heating represents a major source of regional energy consumption. The heating factor associated with grid-supplied electricity drives the relative contribution of energy-for-water by utilities and households. For most scenarios of grid operations, energy for household water heating significantly outweighs utility energy consumption. The study demonstrates how publicly available and detailed data for energy and water use supportsmore »sustainability planning. The method is applicable to cities everywhere.

    « less
  4. Abstract Integrated energy-water-land (EWL) planning promotes synergies and avoids conflicts in ways that sector-specific planning approaches cannot. Many important decisions that influence emerging EWL nexus issues are implemented at regional (e.g., large river basin, electricity grid) and sub-regional (e.g., small river basin, irrigation district) scales. However, actual implementation of integrated planning at these scales has been limited. Simply collecting and visualizing data and interconnections across multiple sectors and sub-regions in a single modeling platform is a unique endeavor in many regions. This study introduces and applies a novel approach to linking together multiple sub-regions in a single platform to characterize and visualize EWL resource use, EWL system linkages within and among sub-regions, and the EWL nexus implications of future policies and investments. This integrated planning methodology is applied in the water-stressed Colorado River Basin in Argentina, which is facing increasing demands for agricultural and fossil fuel commodities. Guided by stakeholders, this study seeks to inform basin planning activities by characterizing and visualizing (1) the basin’s current state of EWL resources, (2) the linkages between sectors within and among basin sub-regions, and (3) the EWL nexus implications of planned future agricultural development activities. Results show that water scarcity, driven in partmore »by human demands that have historically reached 60% of total surface water supply, poses a substantial constraint to economic development in the basin. The Colorado basin has the potential to serve as a testbed for crafting novel and generalizable sub-regional EWL planning approaches capable of informing the EWL planning dialogue globally.« less
  5. In this study, we utilize an input–output (I–O) model to perform an ex-post analysis of the COVID-19 pandemic workforce disruptions in the Philippines. Unlike most disasters that debilitate physical infrastructure systems, the impact of disease pandemics like COVID-19 is mostly concentrated on the workforce. Workforce availability was adversely affected by lockdowns as well as by actual illness. The approach in this paper is to use Philippine I–O data for multiple years and generate Dirichlet probability distributions for the Leontief requirements matrix (i.e., the normalized sectoral transactions matrix) to address uncertainties in the parameters. Then, we estimated the workforce dependency ratio based on a literature survey and then computed the resilience index in each economic sector. For example, sectors that depend heavily on the physical presence of their workforce (e.g., construction, agriculture, manufacturing) incur more opportunity losses compared to sectors where workforce can telework (e.g., online retail, education, business process outsourcing). Our study estimated the 50th percentile economic losses in the range of PhP 3.3 trillion (with telework) to PhP 4.8 trillion (without telework), which is consistent with independently published reports. The study provides insights into the direct and indirect economic impacts of workforce disruptions in emerging economies and will contributemore »to the general domain of disaster risk management.« less