skip to main content


Title: Quantifying Drought Sensitivity of Mediterranean Climate Vegetation to Recent Warming: A Case Study in Southern California
A combination of drought and high temperatures (“global-change-type drought”) is projected to become increasingly common in Mediterranean climate regions. Recently, Southern California has experienced record-breaking high temperatures coupled with significant precipitation deficits, which provides opportunities to investigate the impacts of high temperatures on the drought sensitivity of Mediterranean climate vegetation. Responses of different vegetation types to drought are quantified using the Moderate Resolution Imaging Spectroradiometer (MODIS) data for the period 2000–2017. The contrasting responses of the vegetation types to drought are captured by the correlation and regression coefficients between Normalized Difference Vegetation Index (NDVI) anomalies and the Palmer Drought Severity Index (PDSI). A novel bootstrapping regression approach is used to decompose the relationships between the vegetation sensitivity (NDVI–PDSI regression slopes) and the principle climate factors (temperature and precipitation) associated with the drought. Significantly increased sensitivity to drought in warmer locations indicates the important role of temperature in exacerbating vulnerability; however, spatial precipitation variations do not demonstrate significant effects in modulating drought sensitivity. Based on annual NDVI response, chaparral is the most vulnerable community to warming, which will probably be severely affected by hotter droughts in the future. Drought sensitivity of coastal sage scrub (CSS) is also shown to be very responsive to warming in fall and winter. Grassland and developed land will likely be less affected by this warming. The sensitivity of the overall vegetation to temperature increases is particularly concerning, as it is the variable that has had the strongest secular trend in recent decades, which is expected to continue or strengthen in the future. Increased temperatures will probably alter vegetation distribution, as well as possibly increase annual grassland cover, and decrease the extent and ecological services provided by perennial woody Mediterranean climate ecosystems as well.  more » « less
Award ID(s):
1702580
NSF-PAR ID:
10311483
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
11
Issue:
24
ISSN:
2072-4292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plant phenology will likely shift with climate change, but how temperature and/or moisture regimes will control phenological responses is not well understood. This is particularly true in Mediterranean climate ecosystems where the warmest temperatures and greatest moisture availability are seasonally asynchronous. We examined plant phenological responses at both the population and community levels to four climate treatments (control, warming, drought, and warming plus additional precipitation) embedded within three prairies across a 520 km latitudinal Mediterranean climate gradient within the Pacific Northwest, USA. At the population level, we monitored flowering and abundances in spring 2017 of eight range‐restricted focal species planted both within and north of their current ranges. At the community level, we used normalized difference vegetation index (NDVI) measured from fall 2016 to summer 2018 to estimate peak live biomass, senescence, seasonal patterns, and growing season length. We found that warming exerted a stronger control than our moisture manipulations on phenology at both the population and community levels. Warming advanced flowering regardless of whether a species was within or beyond its current range. Importantly, many of our focal species had low abundances, particularly in the south, suggesting that establishment, in addition to phenological shifts, may be a strong constraint on their future viability. At the community level, warming advanced the date of peak biomass regardless of site or year. The date of senescence advanced regardless of year for the southern and central sites but only in 2018 for the northern site. Growing season length contracted due to warming at the southern and central sites (~3 weeks) but was unaffected at the northern site. Our results emphasize that future temperature changes may exert strong influence on the timing of a variety of plant phenological events, especially those events that occur when temperature is most limiting, even in seasonally water‐limited Mediterranean ecosystems.

     
    more » « less
  2. null (Ed.)
    Abstract. Despite clear signals of regional impacts of the recent severe drought inCalifornia, e.g., within Californian Central Valley groundwater storage and Sierra Nevada forests, our understanding of how this drought affected soil moisture and vegetation responses in lowland grasslands is limited. In order to better understand the resulting vulnerability of these landscapes to fire and ecosystem degradation, we aimed to generalize drought-induced changes in subsurface soil moisture and to explore its effects within grassland ecosystems of Southern California. We used a high-resolution in situ dataset of climate and soil moisture from two grassland sites (coastal and inland), alongside greenness (Normalized Difference Vegetation Index) data from Landsat imagery, to explore drought dynamics in environments with similar precipitation but contrasting evaporative demand over the period 2008–2019. We show that negative impacts of prolonged precipitation deficits on vegetation at the coastal site were buffered by fog and moderate temperatures. During the drought, the Santa Barbara region experienced an early onset of the dry season in mid-March instead of April, resulting in premature senescence of grasses by mid-April. We developed a parsimonious soil moisture balance model that captures dynamic vegetation–evapotranspiration feedbacks and analyzed the links between climate, soil moisture, and vegetation greenness over several years of simulated drought conditions, exploring the impacts of plausible climate change scenarios that reflect changes to precipitation amounts, their seasonal distribution, and evaporative demand. The redistribution of precipitation over a shortened rainy season highlighted a strong coupling of evapotranspiration to incoming precipitation at the coastal site, while the lower water-holding capacity of soils at the inland site resulted in additional drainage occurring under this scenario. The loss of spring rains due to a shortening of the rainy season also revealed a greater impact on the inland site, suggesting less resilience to low moisture at a time when plant development is about to start. The results also suggest that the coastal site would suffer disproportionally from extended dry periods, effectively driving these areas into more extreme drought than previously seen. These sensitivities suggest potential future increases in the risk of wildfires under climate change, as well as increased grassland ecosystem vulnerability. 
    more » « less
  3. null (Ed.)
    Rangelands provide significant socioeconomic and environmental benefits to humans. However, climate variability and anthropogenic drivers can negatively impact rangeland productivity. The main goal of this study was to investigate structural and productivity changes in rangeland ecosystems in New Mexico (NM), in the southwestern United States of America during the 1984–2015 period. This goal was achieved by applying the time series segmented residual trend analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index (NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Parameter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an increase in productivity, respectively. More than half of the state (55.6%) had insignificant change productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and ever green forest land cover classes, respectively. Significant decrease in productivity was observed in the northeastern and southeastern quadrants of NM while significant increase was observed in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of detected breakpoints coincided with some of NM’s drought events as indicated by the self-calibrated Palmar Drought Severity Index as their number increased since 2000s following a similar increase in drought severity. Some breakpoints were concurrent with some fire events. The combination of these two types of disturbances can partly explain the emergence of breakpoints with degradation in productivity. Using the breakpoint assessment framework developed in this study, the observed degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Productivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant degradation in productivity over the grasslands and shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively. This assessment of NM’s vegetation productivity is critical to support the decision-making process for rangeland management; address challenges related to the sustainability of forage supply and livestock production; conserve the biodiversity of rangelands ecosystems; and increase their resilience. Future analysis should consider the effects of rising temperatures and drought on rangeland degradation and productivity. 
    more » « less
  4. Abstract

    Much of our current risk assessment, especially for extreme events and natural disasters, comes from the assumption that the likelihood of future extreme events can be predicted based on the past. However, as global temperatures rise, established climate ranges may no longer be applicable, as historic records for extremes such as heat waves and floods may no longer accurately predict the changing future climate. To assess extremes (present‐day and future) over the contiguous United States, we used NOAA's Climate Extremes Index (CEI), which evaluates extremes in maximum and minimum temperature, extreme one‐day precipitation, days without precipitation, and the Palmer Drought Severity Index (PDSI). The CEI is a spatially sensitive index that uses percentile‐based thresholds rather than absolute values to determine climate “extremeness” and is thus well‐suited to compare extreme climate across regions. We used regional climate model data from the North American Regional Climate Change Assessment Program (NARCCAP) to compare a late 20th century reference period to a mid‐21st century “business as usual” (SRES A2) greenhouse gas‐forcing scenario. Results show a universal increase in extreme hot temperatures across all models, with annual average maximum and minimum temperatures exceeding 90th percentile thresholds consistently across the continental United States. Results for precipitation indicators have greater spatial variability from model to model, but indicate an overall movement towards less frequent but more extreme precipitation days in the future. Due to this difference in response between temperature and precipitation, the mid‐21st century CEI is primarily an index of temperature extremes, with 90th percentile temperatures contributing disproportionately to the overall increase in climate extremeness. We also examine the efficacy of the PDSI in this context in comparison to other drought indices.

     
    more » « less
  5. Abstract

    Solar‐induced chlorophyll fluorescence (SIF) could provide information on plant physiological response to water stress (e.g., drought). There are growing interests to study the effect of drought on SIF. However, to what extent SIF responds to drought and how the responses vary under different precipitation, temperature, and potential evapotranspiration conditions are not clear. In this regard, we evaluated the relationship between satellite‐based SIF product and four commonly used meteorological drought indices (Standardized Precipitation‐Evapotranspiration Index, Standardized Precipitation Index, Temperature Condition Index, and Palmer Drought Severity Index) under diverse climate regions in the continental United States. The four drought indices were used because they estimate meteorological drought conditions based on either single or combined meteorological factors such as precipitation, temperature, and potential evapotranspiration, representing different perspectives of drought. The relationship between SIF and meteorological drought varied spatially and differed for different ecosystem types. The high sensitivity occurred in dry areas characterized by a high mean annual growing season temperature and low vegetation productivity. Through random forest regression analyses, we found that temperature, gross primary production, precipitation, and land cover are the major factors affecting the relationships between SIF and meteorological drought indices. Taken together, satellite SIF is highly sensitive to meteorological drought, but the high sensitivity is constrained to dry regions.

     
    more » « less