skip to main content


Title: Increasing plant water stress and decreasing summer streamflow in response to a warmer and wetter climate in seasonally snow‐covered forests
Abstract

Warming temperatures and precipitation changes are expected to alter water availability and increase drought stress in western North America, yet uncertainties remain in how concurrent changes in the amount and seasonality of precipitation interact with warming to affect hydrologic partitioning. We combined over a century of streamflow (Q) and climate observations with two decades of tree growth data and remotely sensed vegetation activity to quantify how temperature and precipitation interact to control hydrologic partitioning in the Front Range of Colorado, Boulder Creek Watershed. Temperature and precipitation significantly increased over the last five decades, with precipitation increasing primarily in winter (11.2 mm decade−1) and temperature increasing primarily during the growing season (0.12°C decade−1). In response to wetter winters and warmer summers, streamflow decreased −9.8 mm decade−1, with largest declines occurring during summer and autumn baseflow (−8.4 mm decade−1). Spring warming was associated with increases in episodic, short spring melt events, earlier and slower snowmelt and an increase in fraction of precipitation available to plants (catchment wetting or W). Warming during the growing season resulted in an increase in the fraction of W lost as evapotranspiration (ET), earlier and lower peaks in remotely sensed normalized difference vegetation index (NDVI) and lower tree ring width index (RWI). These analyses highlight that vegetation is becoming increasingly water limited even as increases in precipitation and slower melt increase plant water availability. Further, catchment‐derived metrics like the Horton Index (ET/W) provide insight in to how simultaneous changes in temperature, precipitation and melt impact vegetation across complex watersheds.

 
more » « less
Award ID(s):
2012669
NSF-PAR ID:
10454398
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecohydrology
Volume:
14
Issue:
1
ISSN:
1936-0584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding how land cover change will impact water resources in snow‐dominated regions is of critical importance as these locations produce disproportionate runoff relative to their land area. We coupled a land cover evolution model with a spatially explicit, physics‐based, watershed process model to simulate land cover change and its impact on the water balance in a 5.0 km2headwater catchment spanning the alpine–subalpine transition on the Colorado Front Range. We simulated two potential futures both with greater air temperature (+4°C/century) and more precipitation (+15%/century, MP) or less precipitation (−15%/century, LP) from 2000 to 2100. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Surprisingly, increases in forest cover led to mean increases in annual streamflow production of 12 mm (6%) and 2 mm (1%) for MP and LP in 2050 with an annual control streamflow of 208 mm. In 2100, mean streamflow production increased by 91 mm (44%) and 61 mm (29%) for MP and LP. This result counters previous work as runoff production increased with forested area due to decreases in snow wind‐scour and increases in drifting leeward of vegetation, highlighting the need to better understand the impacts of forest expansion on the spatial pattern of snow scour, deposition and catchment effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land cover change is critically important due to the potential water resources impacts on downstream regions.

     
    more » « less
  2. The Yukon River basin encompasses over 832,000 km2 of boreal Arctic Alaska and northwest Canada, providing a major transportation corridor and multiple natural resources to regional communities. The river seasonal hydrology is defined by a long winter frozen season and a snowmelt-driven spring flood pulse. Capabilities for accurate monitoring and forecasting of the annual spring freshet and river ice breakup (RIB) in the Yukon and other northern rivers is limited, but critical for understanding hydrologic processes related to snow, and for assessing flood-related risks to regional communities. We developed a regional snow phenology record using satellite passive microwave remote sensing to elucidate interactions between the timing of upland snowmelt and the downstream spring flood pulse and RIB in the Yukon. The seasonal snow metrics included annual Main Melt Onset Date (MMOD), Snowoff (SO) and Snowmelt Duration (SMD) derived from multifrequency (18.7 and 36.5 GHz) daily brightness temperatures and a physically-based Gradient Ratio Polarization (GRP) retrieval algorithm. The resulting snow phenology record extends over a 29-year period (1988–2016) with 6.25 km grid resolution. The MMOD retrievals showed good agreement with similar snow metrics derived from in situ weather station measurements of snowpack water equivalence (r = 0.48, bias = −3.63 days) and surface air temperatures (r = 0.69, bias = 1 day). The MMOD and SO impact on the spring freshet was investigated by comparing areal quantiles of the remotely sensed snow metrics with measured streamflow quantiles over selected sub-basins. The SO 50% quantile showed the strongest (p < 0.1) correspondence with the measured spring flood pulse at Stevens Village (r = 0.71) and Pilot (r = 0.63) river gaging stations, representing two major Yukon sub-basins. MMOD quantiles indicating 20% and 50% of a catchment under active snowmelt corresponded favorably with downstream RIB (r = 0.61) from 19 river observation stations spanning a range of Yukon sub-basins; these results also revealed a 14–27 day lag between MMOD and subsequent RIB. Together, the satellite based MMOD and SO metrics show potential value for regional monitoring and forecasting of the spring flood pulse and RIB timing in the Yukon and other boreal Arctic basins. 
    more » « less
  3. Abstract

    Tundra dominates two‐thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. Here we quantified the effect of winter snowpack and early spring temperature conditions on growing season vegetation phenology (timing of the start, peak, and end of the growing season) and productivity of the dominant tundra vegetation communities of Arctic Alaska. We used daily remotely sensed normalized difference vegetation index (NDVI), and daily snowpack and temperature variables produced by SnowModel and MicroMet, coupled physically based snow and meteorological modeling tools, to (1) determine the most important snowpack and thermal controls on tundra vegetation phenology and productivity and (2) describe the direction of these relationships within each vegetation community. Our results show that soil temperature under the snowpack, snowmelt timing, and air temperature following snowmelt are the most important drivers of growing season timing and productivity among Arctic vegetation communities. Air temperature after snowmelt was the most important control on timing of season start and end, with warmer conditions contributing to earlier phenology in all vegetation communities. In contrast, the controls on the timing of peak season and productivity also included snowmelt timing and soil temperature under the snowpack, dictated in part by the snow insulating capacity. The results of this novel analysis suggest that while future warming effects on phenology may be consistent across communities of the tundra biome, warming may result in divergent, community‐specific productivity responses if coupled with reduced snow insulating capacity lowers winter soil temperature and potential nutrient cycling in the soil.

     
    more » « less
  4. Abstract

    The declining mountain snowpack is expected to melt earlier and more slowly with climate warming. Previous work indicates that lower snowmelt rates are associated with decreased runoff. However, earlier snowmelt could increase runoff via lower vegetation water use in early spring. The relative importance of these factors with regard to runoff is linked to site‐specific conditions such as plant available water storage (PAWS) and energy availability. To disentangle the effects of snowmelt rate and timing on runoff production, we conducted a hydrologic modeling experiment at sites in Colorado (NR1) and California (P301) that controlled for snowmelt rate and timing multicollinearity. We tested the sensitivity of snowmelt season potential runoff (R), changes in subsurface storage (ΔS), and other water budget components to snowmelt rate (smr) and timing (smt) using multiple linear regression and global sensitivity analysis (GSA). Regression results confirmed thatRwas governed by the competing influence ofsmrandsmt. At both sites, ΔSwas more sensitive tosmtthansmrwhileRwas more sensitive tosmrat P301 and tosmtat NR1, reflecting energy limitation at NR1. GSA analyses mirrored the regressions forR, confirming thatsmtwas more important at NR1 than P301. This work suggests that runoff increases from earlier snowmelt may counteract runoff losses due to slower snowmelt and that this process is mediated by PAWS and energy availability. These results suggest thatRwill be more susceptible to future changes insmrandsmtat sites with greater PAWS and available energy.

     
    more » « less
  5. Abstract

    Global climate change substantially influences vegetation spring phenology, that is, green‐up date (GUD), in the northern permafrost region. Changes in GUD regulate ecosystem carbon uptake, further feeding back to local and regional climate systems. Extant studies mainly focused on the direct effects of climate factors, such as temperature, precipitation, and insolation; however, the responses of GUD to permafrost degradation caused by warming (i.e., indirect effects) remain elusive yet. In this study, we examined the impacts of permafrost degradation on GUD by analyzing the long‐term trend of satellite‐based GUD in relation to permafrost degradation measured by the start of thaw (SOT) and active layer thickness (ALT). We found significant trends of advancing GUD, SOT, and thickening ALT (< 0.05), with a spatially averaged slope of −2.1 days decade−1, −4.1 days decade−1, and +1.1 cm decade−1, respectively. Using partial correlation analyses, we found more than half of the regions with significantly negative correlations between spring temperature and GUD became nonsignificant after considering permafrost degradation. GUD exhibits dominant‐positive (37.6% vs. 0.6%) and dominant‐negative (1.8% vs. 35.1%) responses to SOT and ALT, respectively. Earlier SOT and thicker ALT would enhance soil water availability, thus alleviating water stress for vegetation green‐up. Based on sensitivity analyses, permafrost degradation was the dominant factor controlling GUD variations in 41.7% of the regions, whereas only 19.6% of the regions were dominated by other climatic factors (i.e., temperature, precipitation, and insolation). Our results indicate that GUDs were more sensitive to permafrost degradation than direct climate change in spring among different vegetation types, especially in high latitudes. This study reveals the significant impacts of permafrost degradation on vegetation GUD and highlights the importance of permafrost status in better understanding spring phenological responses to future climate change.

     
    more » « less