A new friction device using band brake technology, termed the Banded Rotary Friction Damper (BRFD), has been fabricated at the NHERI Lehigh Experimental Facility. The damping mechanism is based on band brake technology and leverages a self-energizing mechanism to produce large damping forces with low input energy. The device is a second-generation BRFD, where the friction mechanism is achieved using two electric actuators. The BRFD generates a damping force as a function of the input force provided by the electric actuators, where the ratio of BRFD force output-to-electric actuator force input is equal to about 112. The paper presents the results of a study using real-time hybrid simulations (RTHS) to investigate the performance of the BRFD’s in mitigating seismic hazards of a two-story reinforced concrete building. The building has two and three special moment resisting frames (SMRFs) in the east-west and north-south directions, respectively. In order to perform the RTHS, the north south SMRF is considered and the BRFD along with a parallel elastic member is used as a base isolation system to mitigate the effects of earthquake hazards by reducing story drift and floor accelerations of the structure. For the RTHS the building and the elastic component of the isolator are part of the analytical substructure while the experimental substructure is comprised of the BRFD. The response of the structure is investigated involving six Maximum Considered Earthquake (MCE) hazard level events that includes three near-field and three far-field ground motions. The explicit, unconditionally stable dissipative Modified KR-α integration algorithm is used to accurately integrate the equations of motion during the RTHS. The model for the reinforced concrete building is created using explicit non-linear force-based fiber elements to discretely model each member of the structure. First, the details of the prototype of the BRFD are presented. Second, the details of the isolator system consisting of a linear spring element and the BRFD are discussed. Finally, the details of the RTHS study and the results are presented. The building’s inter-story peak and residual story drift from base-isolated and fixed-based conditions are compared. Results show that the proposed isolator system produces a significant reduction in both maximum inter-story drift and residual drift, and reduces the damage developed in the structure during the MCE.
more »
« less
Numerical verification of variable friction cladding connection for multihazard mitigation
The motion of cladding systems can be leveraged to mitigate natural and man-made hazards. The literature counts various examples of connections enhanced with passive energy dissipation capabilities at connections. However, because such devices are passive, their mitigation performance is typically limited to specific excitations. The authors have recently proposed a novel variable friction cladding connection capable of mitigating hazards semi-actively. The variable friction cladding connection is engineered to transfer lateral forces from the cladding element to the structural system. Its variation in friction force is generated by a toggle-actuated variable normal force applied onto sliding friction plates. In this study, a multiobjective motion-based design methodology integrating results from the previous work is proposed to leverage the variable friction cladding connection for nonsimultaneous wind, seismic, and blast hazard mitigation. The procedure starts with the quantification of each hazard and performance objectives. It is followed by the selection of dynamic parameters enabling prescribed performance under wind and seismic loads, after which an impact rubber bumper is designed to satisfy motion requirements under blast. Last, the peak building responses are computed and iterations conducted on the design parameters on the satisfaction of the motion objectives. The motion-based design procedure is verified through numerical simulations on two example buildings subjected to the three nonsimultaneous hazards. The performance of the variable friction cladding connection is also assessed and compared against different control cases. Results show that the motion-based design procedure yields a conservative design approach in meeting all of the motion requirements and that the variable friction cladding connection performs significantly well at mitigating vibrations.
more »
« less
- PAR ID:
- 10311581
- Date Published:
- Journal Name:
- Journal of Vibration and Control
- Volume:
- 27
- Issue:
- 1-2
- ISSN:
- 1077-5463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Finding an optimal design for a structural system subject to seismic actions to minimize failure probability, repair costs, and injuries to occupants, significantly contributes to the resilience of buildings in earthquake regions. This research presents a comprehensive framework for the performance-based design optimization of steel structures, incorporating the Performance-Based Earthquake Engineering (PBEE) methodology delineated in FEMA P-58 [1]. A selected set of ground motions, consistent with the seismic hazard intensity of interest, and a nonlinear finite element model, established using OpenSees, enable the assessment of the system's dynamic response. To address the computational complexity related to evaluating the probability of failure of the system during an optimization iteration when using the PBEE methodology for assessing performance, this study introduces metamodeling techniques as a substitute for the original high-fidelity nonlinear finite element model. In particular, Kriging is employed to approximate both the median and standard deviation of the Engineering Demand Parameters (EDPs) in the design domain. The parameters of the Kriging metamodels are derived from nonlinear dynamic analyses performed using the original high-fidelity model and an optimal sampling plan obtained through Latin Hypercube sampling. Under the assumption of a lognormal distribution, the metamodel is then used to generate a large number of simulated demand sets necessary for the Monte Carlo procedure adopted by FEMA P-58 to calculate the distribution of probable losses for any given value of the design variable vector. Additionally, the median and standard deviation of the fragility function modeling collapse are also approximated by a Kriging metamodel, in which the parameters are derived from an Incremental Dynamic Analysis (IDA) for any given value of the design variable vector. The scheme is illustrated in a full-scale case study consisting of the performance-based optimization of the buckling-restrained braces of a steel seismic force-resisting system in terms of expected losses and construction costs. The study demonstrates that the proposed risk-based optimization scheme effectively balances construction costs with expected financial losses from earthquakes, thus enhancing the seismic performance of the system.[1] Applied Technology Council, & National Earthquake Hazards Reduction Program (US). (2012). Seismic performance assessment of buildings. Federal Emergency Management Agency.more » « less
-
Performance-based procedures represent an improvement over current state-of-practice procedures that treat the assessment of seismic demand and engineering response parameters independently. Procedures used in current practice generally provide estimates of liquefaction-induced ground settlement that are inconsistent with the desired ground settlement hazard level. A recently developed probabilistic procedure to estimate liquefaction-induced ground settlement is employed to develop a new performance-based procedure that estimates ground settlement which accounts for key sources of uncertainty. The ground-motion intensity and ground settlement estimations are integrated in the proposed procedure to produce hazard curves for liquefaction-induced ground settlement. The hazard curve for ground settlement links different hazard levels with their corresponding values of ground settlement by evaluating a wide range of ground-motion intensities and site characterization parameters with their associated uncertainties. The proposed performance-based procedure also permits the evaluation of different sources of uncertainty and their effects on the ground settlement estimate.more » « less
-
According to a new design paradigm called Converging Design, high-level optimization objectives such as resilience and sustainability can be pursued through iterative simulation and feedback. Unlike traditional design processes that prioritize desirable seismic performance at various seismic hazard levels, the Converging Design methodology also considers the long-term ecological impact of construction and functional recovery. This methodology requires navigating competing priorities, which can be pursued through multiobjective optimization (MOO). However, computational costs and incorporating uncertainty in seismic analysis also demand that optimization frameworks use algorithms and analysis resolutions that are appropriate to the decisions being made as the design is refined. While such a framework could be applied to any material, mass timber systems are increasingly attractive as a potential sustainable solution for buildings. In this study, using a Python-based object-oriented program, an automated structural design procedure is developed to evaluate the seismic and sustainability performance of parametrically definable mass timber building configurations. Different geometric classes with Cross-Laminated Timber Rocking Walls are modeled using OpenSees and are automatically designed. Their behavior is then studied to provide insights into the relationship between structural variables and the optimization objectives. The results show a clear trade-off between Seismic Safety (the inverse of risk) and Global Warming Potential due to the construction of different design options, although the nature of this trade-off depends on the desired seismic behavior limit states. The developed software thus enables designers to efficiently explore a range of early design options for mass timber lateral systems and to achieve optimal solutions that balance seismic and sustainability performance.more » « less
-
This study proposes a surrogate-based cyber-physical aerodynamic shape optimization (SB-CP-ASO) approach for high-rise buildings under wind loading. Three components are developed in the SB-CP-ASO procedure: (1) an adaptive subtractive manufacturing technique, (2) a high-throughput wind tunnel testing procedure, and (3) a flexible infilling strategy. The downtime of the procedure is minimized through a parallel manufacturing and testing (llM&T) technique. An unexplored double-section setback strategy with various cross-sections and transitions positions is used to demonstrate the performance of the proposed procedure. A total of 173 physical specimens were evaluated to reach the optimization convergence within the reserved testing window. Further analysis of promising shapes considering multiple design wind speeds is suggested to achieve target performance objectives at various hazard levels. Practical information on setback and cross-section modification strategies is discussed based on the optimization results. In comparison with a square benchmark model, the roof drifts for promising candidates with similar building volumes are reduced by more than 70% at wind speeds higher than 50 m/s. This procedure is expected to provide an efficient platform between owners, architects, and structural engineers to identify ideal candidates within a defined design space for real-world applications of high-rise buildings.more » « less
An official website of the United States government

