Federated learning (FL) involves training a model over massive distributed devices, while keeping the training data localized and private. This form of collaborative learning exposes new tradeoffs among model convergence speed, model accuracy, balance across clients, and communication cost, with new challenges including: (1) straggler problem—where clients lag due to data or (computing and network) resource heterogeneity, and (2) communication bottleneck—where a large number of clients communicate their local updates to a central server and bottleneck the server. Many existing FL methods focus on optimizing along only one single dimension of the tradeoff space. Existing solutions use asynchronous model updatingmore »
Heterogeneity for the Win: One-Shot Federated Clustering
In this work, we explore the unique challenges---and opportunities---of unsupervised federated learning (FL). We develop and analyze a one-shot federated clustering scheme, k-FED, based on the widely-used Lloyd's method for k-means clustering. In contrast to many supervised problems, we show that the issue of statistical heterogeneity in federated networks can in fact benefit our analysis. We analyse k-FED under a center separation assumption and compare it to the best known requirements of its centralized counterpart. Our analysis shows that in heterogeneous regimes where the number of clusters per device (k') is smaller than the total number of clusters over the network k, ($k' \le \sqrt{k}$), we can use heterogeneity to our advantage---significantly weakening the cluster separation requirements for k-FED. From a practical viewpoint, k-FED also has many desirable properties: it requires only round of communication, can run asynchronously, and can handle partial participation or node/network failures. We motivate our analysis with experiments on common FL benchmarks, and highlight the practical utility of one-shot clustering through use-cases in personalized FL and device sampling.
- Award ID(s):
- 1838017
- Publication Date:
- NSF-PAR ID:
- 10311648
- Journal Name:
- International Conference on Machine Learning
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Providing privacy protection has been one of the primary motivations of Federated Learning (FL). Recently, there has been a line of work on incorporating the formal privacy notion of differential privacy with FL. To guarantee the client-level differential privacy in FL algorithms, the clients’ transmitted model updates have to be clipped before adding privacy noise. Such clipping operation is substantially different from its counterpart of gradient clipping in the centralized differentially private SGD and has not been well-understood. In this paper, we first empirically demonstrate that the clipped FedAvg can perform surprisingly well even with substantial data heterogeneity when trainingmore »
-
The conventional machine learning (ML) and deep learning (DL) methods use large amount of data to construct desirable prediction models in a central fusion center for recognizing human activities. However, such model training encounters high communication costs and leads to privacy infringement. To address the issues of high communication overhead and privacy leakage, we employed a widely popular distributed ML technique called Federated Learning (FL) that generates a global model for predicting human activities by combining participated agents’ local knowledge. The state-of-the-art FL model fails to maintain acceptable accuracy when there is a large number of unreliable agents who canmore »
-
Large multipartite quantum systems tend to rapidly reach extraordinary levels of complexity as their number of constituents and entanglement links grow. Here we use complex network theory to study a class of continuous variables quantum states that present both multipartite entanglement and non-Gaussian statistics. In particular, the states are built from an initial imprinted cluster state created via Gaussian entangling operations according to a complex network structure. To go beyond states that can be easily simulated via classical computers we engender non-Gaussian statistics via multiple photon subtraction operations. We then use typical networks measures, the degree and clustering, to characterizemore »
-
Federated multi-armed bandits (FMAB) is a new bandit paradigm that parallels the federated learning (FL) framework in supervised learning. It is inspired by practical applications in cognitive radio and recommender systems, and enjoys features that are analogous to FL. This paper proposes a general framework of FMAB and then studies two specific federated bandit models. We first study the approximate model where the heterogeneous local models are random realizations of the global model from an unknown distribution. This model introduces a new uncertainty of client sampling, as the global model may not be reliably learned even if the finite localmore »