skip to main content

Title: Tool Integration for Automated Synthesis of Distributed Embedded Controllers
Controller design and their software implementations are usually done in isolated design spaces using respective COTS design tools. However, this separation of concerns can lead to long debugging and integration phases. This is because assumptions made about the implementation platform during the design phase—e.g., related to timing—might not hold in practice, thereby leading to unacceptable control performance. In order to address this, several control/architecture co-design techniques have been proposed in the literature. However, their adoption in practice has been hampered by the lack of design flows using commercial tools. To the best of our knowledge, this is the first article that implements such a co-design method using commercially available design tools in an automotive setting, with the aim of minimally disrupting existing design flows practiced in the industry. The goal of such co-design is to jointly determine controller and platform parameters in order to avoid any design-implementation gap , thereby minimizing implementation time testing and debugging. Our setting involves distributed implementations of control algorithms on automotive electronic control units ( ECUs ) communicating via a FlexRay bus. The co-design and the associated toolchain Co-Flex jointly determines controller and FlexRay parameters (that impact signal delays) in order to optimize specified design more » metrics. Co-Flex seamlessly integrates the modeling and analysis of control systems in MATLAB/Simulink with platform modeling and configuration in SIMTOOLS/SIMTARGET that is used for configuring FlexRay bus parameters. It automates the generation of multiple Pareto-optimal design options with respect to the quality of control and the resource usage, that an engineer can choose from. In this article, we outline a step-by-step software development process based on Co-Flex tools for distributed control applications. While our exposition is automotive specific, this design flow can easily be extended to other domains. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
ACM Transactions on Cyber-Physical Systems
Sponsoring Org:
National Science Foundation
More Like this
  1. The control of cryogenic qubits in today’s super-conducting quantum computer prototypes presents significant scalability challenges due to the massive costs of generating/routing the analog control signals that need to be sent from a classical controller at room temperature to the quantum chip inside the dilution refrigerator. Thus, researchers in industry and academia have focused on designing in-fridge classical controllers in order to mitigate these challenges. Due to the maturity of CMOS logic, many industrial efforts (Microsoft, Intel) have focused on Cryo-CMOS as a near-term solution to design in-fridge classical controllers. Meanwhile, Supercon-ducting Single Flux Quantum (SFQ) is an alternative, less mature classical logic family proposed for large-scale in-fridge controllers. SFQ logic has the potential to maximize scalability thanks to its ultra-high speed and very low power consumption. However, architecture design for SFQ logic poses challenges due to its unconventional pulse-driven nature and lack of dense memory and logic. Thus, research at the architecture level is essential to guide architects to design SFQ-based classical controllers for large-scale quantum machines.In this paper, we present DigiQ, the first system-level design of a Noisy Intermediate Scale Quantum (NISQ)-friendly SFQ-based classical controller. We perform a design space exploration of SFQ-based controllers and co-design the quantummore »gate decompositions and SFQ-based implementation of those decompositions to find an optimal SFQ-friendly design point that trades area and power for latency and control while ensuring good quantum algorithmic performance. Our co-design results in a single instruction, multiple data (SIMD) controller architecture, which has high scalability, but imposes new challenges on the calibration of control pulses. We present software-level solutions to address these challenges, which if unaddressed would degrade quantum circuit fidelity given the imperfections of qubit hardware.To validate and characterize DigiQ, we first implement it using hardware description languages and synthesize it using state-of-the-art/validated SFQ synthesis tools. Our synthesis results show that DigiQ can operate within the tight power and area budget of dilution refrigerators at >42,000-qubit scales. Second, we confirm the effectiveness of DigiQ in running quantum algorithms by modeling the execution time and fidelity of a variety of NISQ applications. We hope that the promising results of this paper motivate experimentalists to further explore SFQ-based quantum controllers to realize large-scale quantum machines with maximized scalability.« less
  2. Modern automotive systems feature dozens of electronic control units (ECUs) for chassis, body and powertrain functions. These systems are costly and inflexible to upgrade, requiring ever increasing numbers of ECUs to support new features such as advanced driver assistance (ADAS), autonomous technologies, and infotainment. To counter these challenges, we propose DriveOS, a safe, secure, extensible, and timing-predictable system for modern vehicle management in a centralized platform. DriveOS is based on a separation kernel, where timing and safety-critical ECU functions are implemented in a real-time OS (RTOS) alongside non-critical software in Linux or Android. The system enforces the separation, or partitioning, of both software and hardware among different OSes. DriveOS runs on a relatively low-cost embedded PC-class platform, supporting multiple cores and hardware virtualization capabilities. Instrument cluster, in-vehicle infotainment and advanced driver assistance system services are implemented in a Yocto Linux guest, which communicates with critical real-time services via secure shared memory. The RTOS manages a real-time controller area network (CAN) interface that is inaccessible to Linux services except via well-defined and legitimate communication channels. In this work, we integrate three Qt-based services written for Yocto Linux, running in parallel with a real-time longitudinal controller task and multiple CAN bus concentrators,more »for vehicular sensor data processing and actuation. We demonstrate the benefits and performance of DriveOS with a hardware-in-the-loop CARLA simulation using a real car dataset.« less
  3. Most modern commodity imaging systems we use directly for photography—or indirectly rely on for downstream applications—employ optical systems of multiple lenses that must balance deviations from perfect optics, manufacturing constraints, tolerances, cost, and footprint. Although optical designs often have complex interactions with downstream image processing or analysis tasks, today’s compound optics are designed in isolation from these interactions. Existing optical design tools aim to minimize optical aberrations, such as deviations from Gauss’ linear model of optics, instead of application-specific losses, precluding joint optimization with hardware image signal processing (ISP) and highly parameterized neural network processing. In this article, we propose an optimization method for compound optics that lifts these limitations. We optimize entire lens systems jointly with hardware and software image processing pipelines, downstream neural network processing, and application-specific end-to-end losses. To this end, we propose a learned, differentiable forward model for compound optics and an alternating proximal optimization method that handles function compositions with highly varying parameter dimensions for optics, hardware ISP, and neural nets. Our method integrates seamlessly atop existing optical design tools, such as Zemax . We can thus assess our method across many camera system designs and end-to-end applications. We validate our approach in an automotivemore »camera optics setting—together with hardware ISP post processing and detection—outperforming classical optics designs for automotive object detection and traffic light state detection. For human viewing tasks, we optimize optics and processing pipelines for dynamic outdoor scenarios and dynamic low-light imaging. We outperform existing compartmentalized design or fine-tuning methods qualitatively and quantitatively, across all domain-specific applications tested.« less
  4. Programming languages, libraries, and development tools have transformed the application development processes for mobile computing and machine learning. This paper introduces CyPhyHouse-a toolchain that aims to provide similar programming, debugging, and deployment benefits for distributed mobile robotic applications. Users can develop hardware-agnostic, distributed applications using the high-level, event driven Koord programming language, without requiring expertise in controller design or distributed network protocols. The modular, platform-independent middleware of CyPhyHouse implements these functionalities using standard algorithms for path planning (RRT), control (MPC), mutual exclusion, etc. A high-fidelity, scalable, multi-threaded simulator for Koord applications is developed to simulate the same application code for dozens of heterogeneous agents. The same compiled code can also be deployed on heterogeneous mobile platforms. The effectiveness of CyPhyHouse in improving the design cycles is explicitly illustrated in a robotic testbed through development, simulation, and deployment of a distributed task allocation application on in-house ground and aerial vehicles.
  5. We present FireSim, an open-source simulation platform that enables cycle-exact microarchitectural simulation of large scale-out clusters by combining FPGA-accelerated simulation of silicon-proven RTL designs with a scalable, distributed network simulation. Unlike prior FPGA-accelerated simulation tools, FireSim runs on Amazon EC2 F1, a public cloud FPGA platform, which greatly improves usability, provides elasticity, and lowers the cost of large-scale FPGA-based experiments. We describe the design and implementation of FireSim and show how it can provide sufficient performance to run modern applications at scale, to enable true hardware-software co-design. As an example, we demonstrate automatically generating and deploying a target cluster of 1,024 3.2 GHz quad-core server nodes, each with 16 GB of DRAM, interconnected by a 200 Gbit/s network with 2 microsecond latency, which simulates at a 3.4 MHz processor clock rate (less than 1,000x slowdown over real-time). In aggregate, this FireSim instantiation simulates 4,096 cores and 16 TB of memory, runs ~ 14 billion instructions per second, and harnesses 12.8 million dollars worth of FPGAs-at a total cost of only ~ $100 per simulation hour to the user. We present several examples to show how FireSim can be used to explore various research directions in warehouse-scale machine design, including modelingmore »networks with high-bandwidth and low-latency, integrating arbitrary RTL designs for a variety of commodity and specialized datacenter nodes, and modeling a variety of datacenter organizations, as well as reusing the scale-out FireSim infrastructure to enable fast, massively parallel cycle-exact single-node microarchitectural experimentation.« less