skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The topology of Baumslag–Solitar representations
Let [Formula: see text] be a Baumslag–Solitar group and let [Formula: see text] be a complex reductive algebraic group with maximal compact subgroup [Formula: see text]. We show that, when [Formula: see text] and [Formula: see text] are relatively prime with distinct absolute values, there is a strong deformation retraction of [Formula: see text] onto [Formula: see text].  more » « less
Award ID(s):
1704692
PAR ID:
10311893
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Topology and Analysis
Volume:
13
Issue:
01
ISSN:
1793-5253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fix a weakly minimal (i.e. superstable [Formula: see text]-rank [Formula: see text]) structure [Formula: see text]. Let [Formula: see text] be an expansion by constants for an elementary substructure, and let [Formula: see text] be an arbitrary subset of the universe [Formula: see text]. We show that all formulas in the expansion [Formula: see text] are equivalent to bounded formulas, and so [Formula: see text] is stable (or NIP) if and only if the [Formula: see text]-induced structure [Formula: see text] on [Formula: see text] is stable (or NIP). We then restrict to the case that [Formula: see text] is a pure abelian group with a weakly minimal theory, and [Formula: see text] is mutually algebraic (equivalently, weakly minimal with trivial forking). This setting encompasses most of the recent research on stable expansions of [Formula: see text]. Using various characterizations of mutual algebraicity, we give new examples of stable structures of the form [Formula: see text]. Most notably, we show that if [Formula: see text] is a weakly minimal additive subgroup of the algebraic numbers, [Formula: see text] is enumerated by a homogeneous linear recurrence relation with algebraic coefficients, and no repeated root of the characteristic polynomial of [Formula: see text] is a root of unity, then [Formula: see text] is superstable for any [Formula: see text]. 
    more » « less
  2. null (Ed.)
    Let [Formula: see text] be a group acting properly and by isometries on a metric space [Formula: see text]; it follows that the quotient or orbit space [Formula: see text] is also a metric space. We study the Vietoris–Rips and Čech complexes of [Formula: see text]. Whereas (co)homology theories for metric spaces let the scale parameter of a Vietoris–Rips or Čech complex go to zero, and whereas geometric group theory requires the scale parameter to be sufficiently large, we instead consider intermediate scale parameters (neither tending to zero nor to infinity). As a particular case, we study the Vietoris–Rips and Čech thickenings of projective spaces at the first scale parameter where the homotopy type changes. 
    more » « less
  3. Let [Formula: see text] be a residually finite dimensional algebra (not necessarily associative) over a field [Formula: see text]. Suppose first that [Formula: see text] is algebraically closed. We show that if [Formula: see text] satisfies a homogeneous almost identity [Formula: see text], then [Formula: see text] has an ideal of finite codimension satisfying the identity [Formula: see text]. Using well known results of Zelmanov, we conclude that, if a residually finite dimensional Lie algebra [Formula: see text] over [Formula: see text] is almost [Formula: see text]-Engel, then [Formula: see text] has a nilpotent (respectively, locally nilpotent) ideal of finite codimension if char [Formula: see text] (respectively, char [Formula: see text]). Next, suppose that [Formula: see text] is finite (so [Formula: see text] is residually finite). We prove that, if [Formula: see text] satisfies a homogeneous probabilistic identity [Formula: see text], then [Formula: see text] is a coset identity of [Formula: see text]. Moreover, if [Formula: see text] is multilinear, then [Formula: see text] is an identity of some finite index ideal of [Formula: see text]. Along the way we show that if [Formula: see text] has degree [Formula: see text], and [Formula: see text] is a finite [Formula: see text]-algebra such that the probability that [Formula: see text] (where [Formula: see text] are randomly chosen) is at least [Formula: see text], then [Formula: see text] is an identity of [Formula: see text]. This solves a ring-theoretic analogue of a (still open) group-theoretic problem posed by Dixon, 
    more » « less
  4. null (Ed.)
    Assume [Formula: see text]. Let [Formula: see text] be a [Formula: see text] equivalence relation coded in [Formula: see text]. [Formula: see text] has an ordinal definable equivalence class without any ordinal definable elements if and only if [Formula: see text] is unpinned. [Formula: see text] proves [Formula: see text]-class section uniformization when [Formula: see text] is a [Formula: see text] equivalence relation on [Formula: see text] which is pinned in every transitive model of [Formula: see text] containing the real which codes [Formula: see text]: Suppose [Formula: see text] is a relation on [Formula: see text] such that each section [Formula: see text] is an [Formula: see text]-class, then there is a function [Formula: see text] such that for all [Formula: see text], [Formula: see text]. [Formula: see text] proves that [Formula: see text] is Jónsson whenever [Formula: see text] is an ordinal: For every function [Formula: see text], there is an [Formula: see text] with [Formula: see text] in bijection with [Formula: see text] and [Formula: see text]. 
    more » « less
  5. Let [Formula: see text] be a set of positive integers, [Formula: see text] denoting the largest element, so that for any two of the [Formula: see text] subsets the sum of all elements is distinct. Erdős asked whether this implies [Formula: see text] for some universal [Formula: see text]. We prove, slightly extending a result of Elkies, that for any [Formula: see text], [Formula: see text] with equality if and only if all subset sums are [Formula: see text]-separated. This leads to a new proof of the currently best lower bound [Formula: see text]. The main new insight is that having distinct subset sums and [Formula: see text] small requires the random variable [Formula: see text] to be close to Gaussian in a precise sense. 
    more » « less