skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A remark about the anomalies of cyclic holomorphic permutation orbifolds
Using a result of Longo and Xu, we show that the anomaly arising from a cyclic permutation orbifold of order 3 of a holomorphic conformal net [Formula: see text] with central charge [Formula: see text] depends on the “gravitational anomaly” [Formula: see text]. In particular, the conjecture that holomorphic permutation orbifolds are non-anomalous and therefore a stronger conjecture of Müger about braided crossed [Formula: see text]-categories arising from permutation orbifolds of completely rational conformal nets are wrong. More generally, we show that cyclic permutations of order [Formula: see text] are non-anomalous if and only if [Formula: see text] or [Formula: see text]. We also show that all cyclic permutation gaugings of [Formula: see text] arise from conformal nets.  more » « less
Award ID(s):
1821162
PAR ID:
10311941
Author(s) / Creator(s):
Date Published:
Journal Name:
International Journal of Mathematics
Volume:
31
Issue:
10
ISSN:
0129-167X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Free fermion vertex superalgebras are discussed from the point of view of Urod vertex algebras [T. Arakawa, T. Creutzig and B. Feigin, Urod algebras and translation of [Formula: see text]-algebras, Forum Mathematics Sigma, Vol. 10 (Cambridge University Press, 2022) and M. Bershtein, B. Feigin and A. Litvinov, Coupling of two conformal field theories and Nakajima–Yoshioka blow-up equations, preprint (2013), arXiv:1310.7281]. We present all finite decompositions of the [Formula: see text]-fermion vertex algebra via Virasoro and [Formula: see text] superconformal vertex algebras. We also present decompositions of higher rank fermion algebras using affine [Formula: see text]-algebras, and a conjecture on the existence of the “square root” of the [Formula: see text] fermion algebra. 
    more » « less
  2. Let [Formula: see text] be a (holomorphic) Lagrangian fibration that is very general in the moduli space of Lagrangian fibrations. We conjecture that the singular fibers in codimension one must be semistable degenerations of abelian varieties. We prove a partial result towards this conjecture, and describe an example that provides further evidence. 
    more » « less
  3. For primitive nontrivial Dirichlet characters [Formula: see text] and [Formula: see text], we study the weight zero newform Eisenstein series [Formula: see text] at [Formula: see text]. The holomorphic part of this function has a transformation rule that we express in finite terms as a generalized Dedekind sum. This gives rise to the explicit construction (in finite terms) of elements of [Formula: see text]. We also give a short proof of the reciprocity formula for this Dedekind sum. 
    more » « less
  4. Let [Formula: see text] be a residually finite dimensional algebra (not necessarily associative) over a field [Formula: see text]. Suppose first that [Formula: see text] is algebraically closed. We show that if [Formula: see text] satisfies a homogeneous almost identity [Formula: see text], then [Formula: see text] has an ideal of finite codimension satisfying the identity [Formula: see text]. Using well known results of Zelmanov, we conclude that, if a residually finite dimensional Lie algebra [Formula: see text] over [Formula: see text] is almost [Formula: see text]-Engel, then [Formula: see text] has a nilpotent (respectively, locally nilpotent) ideal of finite codimension if char [Formula: see text] (respectively, char [Formula: see text]). Next, suppose that [Formula: see text] is finite (so [Formula: see text] is residually finite). We prove that, if [Formula: see text] satisfies a homogeneous probabilistic identity [Formula: see text], then [Formula: see text] is a coset identity of [Formula: see text]. Moreover, if [Formula: see text] is multilinear, then [Formula: see text] is an identity of some finite index ideal of [Formula: see text]. Along the way we show that if [Formula: see text] has degree [Formula: see text], and [Formula: see text] is a finite [Formula: see text]-algebra such that the probability that [Formula: see text] (where [Formula: see text] are randomly chosen) is at least [Formula: see text], then [Formula: see text] is an identity of [Formula: see text]. This solves a ring-theoretic analogue of a (still open) group-theoretic problem posed by Dixon, 
    more » « less
  5. For [Formula: see text], the coarse similarity class of A, denoted by [Formula: see text], is the set of all [Formula: see text] such that the symmetric difference of A and B has asymptotic density 0. There is a natural metric [Formula: see text] on the space [Formula: see text] of coarse similarity classes defined by letting [Formula: see text] be the upper density of the symmetric difference of A and B. We study the metric space of coarse similarity classes under this metric, and show in particular that between any two distinct points in this space there are continuum many geodesic paths. We also study subspaces of the form [Formula: see text] where [Formula: see text] is closed under Turing equivalence, and show that there is a tight connection between topological properties of such a space and computability-theoretic properties of [Formula: see text]. We then define a distance between Turing degrees based on Hausdorff distance in the metric space [Formula: see text]. We adapt a proof of Monin to show that the Hausdorff distances between Turing degrees that occur are exactly 0, [Formula: see text], and 1, and study which of these values occur most frequently in the senses of Lebesgue measure and Baire category. We define a degree a to be attractive if the class of all degrees at distance [Formula: see text] from a has measure 1, and dispersive otherwise. In particular, we study the distribution of attractive and dispersive degrees. We also study some properties of the metric space of Turing degrees under this Hausdorff distance, in particular the question of which countable metric spaces are isometrically embeddable in it, giving a graph-theoretic sufficient condition for embeddability. Motivated by a couple of issues arising in the above work, we also study the computability-theoretic and reverse-mathematical aspects of a Ramsey-theoretic theorem due to Mycielski, which in particular implies that there is a perfect set whose elements are mutually 1-random, as well as a perfect set whose elements are mutually 1-generic. Finally, we study the completeness of [Formula: see text] from the perspectives of computability theory and reverse mathematics. 
    more » « less